当前位置:首页 » 交易知识 » 如何计算股票量化交易模型盈利python
扩展阅读
账户中有股票可以转券商 2025-02-05 08:02:07
航发科技今天股票市场 2025-02-05 06:47:15

如何计算股票量化交易模型盈利python

发布时间: 2022-07-15 09:35:07

『壹』 python的量化代码怎么用到股市中

2010 ~ 2017 沪深A股各行业量化分析

在开始各行业的量化分析之前,我们需要先弄清楚两个问题:

  • 第一,A股市场上都有哪些行业;

  • 第二,各行业自2010年以来的营收、净利润增速表现如何?

  • 第一个问题
    很好回答,我们使用JQData提供的获取行业成分股的方法,输入get_instries(name='sw_l1')
    得到申万一级行业分类结果如下:它们分别是:【农林牧渔、采掘、化工、钢铁、有色金属、电子、家用电器、食品饮料、纺织服装、轻工制造、医药生物、公用事业、交通运输、房地产、商业贸易、休闲服务、综合、建筑材料、建筑装饰、电器设备、国防军工、计算机、传媒、通信、银行、非银金融、汽车、机械设备】共计28个行业。

    第二个问题
    要知道各行业自2010年以来的营收、净利润增速表现,我们首先需要知道各行业在各个年度都有哪些成分股,然后加总该行业在该年度各成分股的总营收和净利润,就能得到整个行业在该年度的总营收和总利润了。这部分数据JQData也为我们提供了方便的接口:通过调用get_instry_stocks(instry_code=‘行业编码’, date=‘统计日期’),获取申万一级行业指定日期下的行业成分股列表,然后再调用查询财务的数据接口:get_fundamentals(query_object=‘query_object’, statDate=year)来获取各个成分股在对应年度的总营收和净利润,最后通过加总得到整个行业的总营收和总利润。这里为了避免非经常性损益的影响,我们对净利润指标最终选取的扣除非经常性损益的净利润数据。

    我们已经获取到想要的行业数据了。接下来,我们需要进一步分析,这些行业都有什么样的增长特征。

    我们发现,在28个申万一级行业中,有18个行业自2010年以来在总营收方面保持了持续稳定的增长。它们分别是:【农林牧渔,电子,食品饮料,纺织服装,轻工制造,医药生物,公用事业,交通运输,房地产,休闲服务,建筑装饰,电气设备,国防军工,计算机,传媒,通信,银行,汽车】;其他行业在该时间范围内出现了不同程度的负增长。

    那么,自2010年以来净利润保持持续增长的行业又会是哪些呢?结果是只有5个行业保持了基业长青,他们分别是医药生物,建筑装饰,电气设备,银行和汽车。(注:由于申万行业在2014年发生过一次大的调整,建筑装饰,电气设备,银行和汽车实际从2014年才开始统计。)

    从上面的分析结果可以看到,真正能够保持持续稳定增长的行业并不多,如果以扣非净利润为标准,那么只有医药生物,建筑装饰,电气设备,银行和汽车这五个行业可以称之为优质行业,实际投资中,就可以只从这几个行业中去投资。这样做的目的是,一方面,能够从行业大格局层面避免行业下行的风险,绕开一个可能出现负增长的的行业,从而降低投资的风险;另一方面,也大大缩短了我们的投资范围,让投资者能够专注于从真正好的行业去挑选公司进行投资。

「2010-2017」投资于优质行业龙头的收益表现

选好行业之后,下面进入选公司环节。我们知道,即便是一个好的行业也仍然存在表现不好的公司,那么什么是好的公司呢,本文试图从营业收入规模和利润规模和来考察以上五个基业长青的行业,从它们中去筛选公司作为投资标的。

3.1按营业收入规模构建的行业龙头投资组合

首先,我们按照营业收入规模,筛选出以上5个行业【医药生物,建筑装饰,电气设备,银行和汽车】从2010年至今的行业龙头如下表所示:

结论

通过以上行业分析和投资组合的历史回测可以看到:

  • 先选行业,再选公司,即使是从2015年股灾期间开始投资,至2018年5月1号,仍然能够获得相对理想的收益,可以说,红杉资本的赛道投资法则对于一般投资者还是比较靠谱的。

  • 在构建行业龙头投资组合时,净利润指标显著优于营业收入指标,获得的投资收益能够更大的跑赢全市场收益率

  • 市场是不断波动的,如果一个投资者从股灾期间开始投资,那么即使他买入了上述优质行业的龙头组合,在近3年也只能获得12%左右的累计收益;而如果从2016年5月3日开始投资,那么至2018年5月2日,2年时间就能获得超过50%以上的收益了。所以,在投资过程中选择时机也非常重要。

出自:JoinQuant 聚宽数据 JQData

『贰』 如何建立一个股票量化交易模型并仿真

用python:金融想法->数据处理->模型回测->模拟交易->业绩归因->模型修正。

量化交易是指以先进的数学模型替代人为的主观判断,利用计算机技术从庞大的历史数据中海选能带来超额收益的多种“大概率”事件以制定策略,极大地减少了投资者情绪波动的影响,避免在市场极度狂热或悲观的情况下作出非理性的投资决策。

量化交易具有以下几个方面的特点:

1、纪律性。根据模型的运行结果进行决策,而不是凭感觉。纪律性既可以克制人性中贪婪、恐惧和侥幸心理等弱点,也可以克服认知偏差,且可跟踪。

2、系统性。具体表现为“三多”。一是多层次,包括在大类资产配置、行业选择、精选具体资产三个层次上都有模型;二是多角度,定量投资的核心思想包括宏观周期、市场结构、估值、成长、盈利质量、分析师盈利预测、市场情绪等多个角度;三是多数据,即对海量数据的处理。

3、套利思想。定量投资通过全面、系统性的扫描捕捉错误定价、错误估值带来的机会,从而发现估值洼地,并通过买入低估资产、卖出高估资产而获利。

4、概率取胜。一是定量投资不断从历史数据中挖掘有望重复的规律并加以利用;二是依靠组合资产取胜,而不是单个资产取胜。

『叁』 用Python怎么做量化投资

本文将会讲解量化投资过程中的基本流程,量化投资无非这几个流程,数据输入------策略书写------回测输出
其中策略书写部分还涉及到编程语言的选择,如果不想苦恼数据输入和回测输出的话,还要选择回测平台。
一、数据
首先,必须是数据,数据是量化投资的基础
如何得到数据?

Wind:数据来源的最全的还是Wind,但是要付费,学生可以有免费试用的机会,之后还会和大家分享一下怎样才Wind里摘取数据,Wind有很多软件的借口,Excel,Matlab,Python,C++。
预测者网:不经意间发现,一个免费提供股票数据网站 预测者网,下载的是CSV格式
TB交易开拓者:Tradeblazer,感谢@孙存浩提供数据源
TuShare:TuShare -财经数据接口包,基于Python的财经数据包,利用Python进行摘取
如何存储数据?
Mysql
如何预处理数据?

空值处理:利用DataFrame的fill.na()函数,将空值(Nan)替换成列的平均数、中位数或者众数
数据标准化
数据如何分类?
行情数据
财务数据
宏观数据
二、计算语言&软件

已经有很多人在网上询问过该选择什么语言?笔者一开始用的是matlab,但最终选择了python
python:库很多,只有你找不到的,没有你想不到,和量化这块结合比较紧密的有:
Numpy&Scipy:科学计算库,矩阵计算
Pandas:金融数据分析神器,原AQR资本员工写的一个库,处理时间序列的标配

Matplotlib:画图库
scikit-learn:机器学习库
statsmodels:统计分析模块
TuShare:免费、开源的python财经数据接口包

Zipline:回测系统
TaLib:技术指标库
matlab:主要是矩阵运算、科学运算这一块很强大,主要有优点是WorkSpace变量可视化

python的Numpy+Scipy两个库完全可以替代Matlab的矩阵运算
Matplotlib完克Matlab的画图功能
python还有很多其他的功能
pycharm(python的一款IDE)有很棒的调试功能,能代替Matlab的WorkSpace变量可视化
推荐的python学习文档和书籍
关于python的基础,建议廖雪峰Python 2.7教程,适合于没有程序基础的人来先看,涉及到python的基本数据类型、循环语句、条件语句、函数、类与对象、文件读写等很重要的基础知识。

涉及到数据运算的话,其实基础教程没什么应用,python各类包都帮你写好了,最好的学习资料还是它的官方文档,文档中的不仅有API,还会有写实例教程
pandas文档
statsmodels文档
scipy和numpy文档
matplotlib文档

TuShare文档
第二,推荐《利用Python进行数据分析》,pandas的开发初衷就是用来处理金融数据的
三、回测框架和网站
两个开源的回测框架
PyAlgoTrade - Algorithmic Trading

Zipline, a Pythonic Algorithmic Trading Library

『肆』 如何用python计算某支股票持有90天的收益率

defget(self,get,money):
print“ATM:”
print“yourmoneyis+“,self.get,”%aday
self.today=self.money*(self.get/100)+self.money
print“nowyouhave”,self.today
self.tomorrow=self.today*(self.get/100)+self.today
print“tomorrowyouwellhave”,self.tomorrow
get(50,10000)

这个代码会给你1天后和2天后的余额,如果要显示九十天,还请您自己打完

『伍』 怎么学习python量化交易

下面教你八步写个量化交易策略——单股票均线策略

1 确定策略内容与框架

若昨日收盘价高出过去20日平均价今天开盘买入股票
若昨日收盘价低于过去20日平均价今天开盘卖出股票

只操作一只股票,很简单对吧,但怎么用代码说给计算机听呢?

想想人是怎么操作的,应该包括这样两个部分

既然是单股票策略,事先决定好交易哪一个股票。

每天看看昨日收盘价是否高出过去20日平均价,是的话开盘就买入,不是开盘就卖出。每天都这么做,循环下去。

对应代码也是这两个部分

definitialize(context):
用来写最开始要做什么的地方
defhandle_data(context,data):
用来写每天循环要做什么的地方

2 初始化

我们要写设置要交易的股票的代码,比如 兔宝宝(002043)

definitialize(context):
g.security='002043.XSHE'#存入兔宝宝的股票代码

3 获取收盘价与均价

首先,获取昨日股票的收盘价

#用法:变量=data[股票代码].close
last_price=data[g.security].close#取得最近日收盘价,命名为last_price

然后,获取近二十日股票收盘价的平均价

#用法:变量=data[股票代码].mavg(天数,‘close’)
#获取近二十日股票收盘价的平均价,命名为average_price
average_price=data[g.security].mavg(20,'close')

4 判断是否买卖

数据都获取完,该做买卖判断了

#如果昨日收盘价高出二十日平均价,则买入,否则卖出
iflast_price>average_price:
买入
eliflast_price<average_price:
卖出

问题来了,现在该写买卖下单了,但是拿多少钱去买我们还没有告诉计算机,所以每天还要获取账户里现金量。

#用法:变量=context.portfolio.cash
cash=context.portfolio.cash#取得当前的现金量,命名为cash

5 买入卖出

#用法:order_value(要买入股票股票的股票代码,要多少钱去买)
order_value(g.security,cash)#用当前所有资金买入股票
#用法:order_target(要买卖股票的股票代码,目标持仓金额)
order_target(g.security,0)#将股票仓位调整到0,即全卖出

6 策略代码写完,进行回测

把买入卖出的代码写好,策略就写完了,如下

definitialize(context):#初始化
g.security='002043.XSHE'#股票名:兔宝宝
defhandle_data(context,data):#每日循环
last_price=data[g.security].close#取得最近日收盘价
#取得过去二十天的平均价格
average_price=data[g.security].mavg(20,'close')
cash=context.portfolio.cash#取得当前的现金
#如果昨日收盘价高出二十日平均价,则买入,否则卖出。
iflast_price>average_price:
order_value(g.security,cash)#用当前所有资金买入股票
eliflast_price<average_price:
order_target(g.security,0)#将股票仓位调整到0,即全卖出

现在,在策略回测界面右上部,设置回测时间从20140101到20160601,设置初始资金100000,设置回测频率,然后点击运行回测。

7 建立模拟交易,使策略和行情实时连接自动运行

策略写好,回测完成,点击回测结果界面(如上图)右上部红色模拟交易按钮,新建模拟交易如下图。 写好交易名称,设置初始资金,数据频率,此处是每天,设置好后点提交。

8 开启微信通知,接收交易信号

点击聚宽导航栏我的交易,可以看到创建的模拟交易,如下图。 点击右边的微信通知开关,将OFF调到ON,按照指示扫描二维码,绑定微信,就能微信接收交易信号了。

『陆』 用python怎么做量化投资

我目前也在学习量化,现在在学习Python,还有一些具体的模型,太多了!没事可以多交流

『柒』 股票交易盈利问题如何计算的

股票收益率是反映股票收益水平的指标。投资者购买股票或债券最关心的是能获得多少收益,衡量一项证券投资收益大小以收益率来表示。反映股票收益率的高低,一般有三个指标:①本期股利收益率。是以现行价格购买股票的预期收益率。②持有期收益率。股票没有到期,投资者持有股票的时间有长有短,股票在持有期间的收益率为持有期收益率。③折股后的持有期收益率。股份公司进行折股后,出现股份增加和股价下降的情况,因此,折股后股票的价格必须调整。

股票收益率(stock yield),是指投资于股票所获得的收益总额与原始投资额的比率。股票得到了投资者的青睐,因为购买股票所带来的收益。股票绝对收益率是股息,相对收益是股票收益率。

股票收益率=收益额/原始投资额
当股票未出卖时,收益额即为股利。
衡量股票投资收益水平指标主要有股利收益率、持有期收益率与拆股后持有期收益率等。

股票收益率指投资于股票所获得的收益总额与原始投资额的比率。股票得到投资者的青睐,是因为购买股票所带来的收益。股票的绝对收益率就是股息,相对收益就是股票收益率。
股票收益率=收益额/原始投资额
当股票未出卖时,收益额即为股利。
衡量股票投资收益的水平指标主要有股利收益率与持有期收益率和拆股后持有期收益率等。
1.股利收益率
股利收益率,又称获利率,是指股份公司以现金形式派发的股息或红利与股票市场价格的比率其计算公式为:
该收益率可用计算已得的股利收益率,也能用于预测未来可能的股利收益率。
2.持有期收益率
持有期收益率指投资者持有股票期间的股息收入和买卖差价之和与股票买入价的比率。其计算公式为:
股票还没有到期日的,投资者持有股票时间短则几天、长则为数年,持有期收益率就是反映投资者在一定持有期中的全部股利收入以及资本利得占投资本金的比重。持有期收益率是投资者最关心的指标之一,但如果要将其与债券收益率、银行利率等其他金融资产的收益率作一比较,须注意时间可比性,即要将持有期收益率转化成年率。
3.持有期回收率
持有期回收率说的是投资者持有股票期间的现金股利收入和股票卖出价之和与股票买入价比率。本指标主要反映其投资回收情况,如果投资者买入股票后股价下跌或操作不当,均有可能出现股票卖出价低于其买入价,甚至出现了持有期收益率为负值的情况,此时,持有期回收率能作为持有期收益率的补充指标,计算投资本金的回收比率。其计算公式为:
4.拆股后的持有期收益率
投资者在买入股票后,在该股份公司发放股票股利或进行股票分割(即拆股)的情况下,股票的市场的市场价格及其投资者持股数量都会发生变化。因此,有必要在拆股后对股票价格及其股票数量作相应调整,以计算拆股后的持有期收益率。其计算公式为:(收盘价格-开盘价格)/开盘价格股票收益率的计算公式 股票收益率= 收益额 /原始投资额 其中:收益额=收回投资额+全部股利-(原始投资额+全部佣金+税款)
当股票未出卖时,收益额即为股利。
衡量其股票投资收益水平指标主要有股利收益率及持有期收益率及其拆股后持有期收益率等。

  • 股利收益率 股利收益率,又称获利率,是指股份公司以现金形式派发的股息或红利与股票市场价格的比率。

  • 本收益率可用于计算已得的股利收益率,也可用预测将来可能的股利收益率。

  • 股票持有期收益率 持有期收益率指投资者持有股票期间的股息收入与买卖差价之和与股票买入价的比率。

  • 股票没有到期日,投资者持有股票的时间短则几天,长则数年,持有期收益率就是反映投资者在一定的持有期内的全部股利收入和资本利得占投资本金的比重。持有期收益率是投资者最关心的指标,但如果要将它与债券收益率、银行利率等其他金融资产的收益率作比较,须注意时间的可比性,即要将持有期收益率转化为年率。

  • 股票持有期回收率 持有期回收率是指投资者持有股票期间的现金股利收入与股票卖出价之和与股票买入价的比率。该指标主要反映投资回收情况,如果投资者买入股票后股价下跌或是操作不当,均有可能出现股票卖出价低于买入价,甚至出现持有期收益率为负值的情况,此时,持有期回收率可作为持有期收益率的补充指标,计算投资本金的回收比率。

  • 拆股后的持有期收益率 投资者在买入股票后,在该股份公司发放股票股利或进行股票分割(即拆股)的情况下,股票的市场的市场价格和投资者持股数量都会发生变化。因此,有必要在拆股后对股票价格和股票数量作相应调整,以计算拆股后的持有期收益率。

  • 在投资决策时的股票收益率计算公式:
    假设股票价格是公平的市场价格,证劵市场处于均衡状态,在任一时点证劵的价格都能完全反映有关该公司的任何可获得的公开信息,而且证劵价格对新信息能迅速做出反应。在这种假设条件下,股票的期望收益率等于其必要的收益率。
    而股票的总收益率可以分为两个部分:第一部分:D1/P0 这是股利收益率。解释为预期(下一期)现金股利除以当前股价,那下一期股利如何算呢,D1=D0*(1+g).第二部分是固定增长率g,解释为股利增长率,由于g与股价增长速度相同,故此g可以解释为股价增长率或资本利得收益率。也可以用天字一号量化交易系统。
    举个例子来说明:股价20元,预计下一期股利1元,该股价将以10%速度持续增长
    则:股票收益率=1/20+10%=15%
    这个例子中的难点是10%,她就是g,g的数值可根据公司的可持续增长率估计,可持续增长率大家应该都知道了吧。g算出后,下一期股利1元也是由她算出的,公式上面已经列出。有了股票收益率15%,股东可作出决定期望公司赚取15%,则可购买。

『捌』 怎么用python计算股票

作为一个python新手,在学习中遇到很多问题,要善于运用各种方法。今天,在学习中,碰到了如何通过收盘价计算股票的涨跌幅。
第一种:
读取数据并建立函数:
import numpy as np
import matplotlib.pyplot as plt
from scipy.interpolate import spline
from pylab import *
import pandas as pd
from pandas import Series
a=pd.read_csv('d:///1.csv',sep=',')#文件位置

t=a['close']
def f(t):
s=[]
for i in range(1,len(t)):
if i==1:
continue
else:
s.append((t[i]-t[i-1])/t[i]*100)
print s
plot(s)

plt.show()
f(t)
第二种:
利用pandas里面的方法:
import pandas as pd

a=pd.read_csv('d:///1.csv')
rets = a['close'].pct_change() * 100
print rets

第三种:
close=a['close']
rets=close/close.shift(1)-1
print rets

总结:python是一种非常好的编程语言,一般而言,我们可以运用构建相关函数来实现自己的思想,但是,众所周知,python中里面的有很多科学计算包,里面有很多方法可以快速解决计算的需要,如上面提到的pandas中的pct_change()。因此在平时的使用中应当学会寻找更好的方法,提高运算速度。

『玖』 如何用Python和机器学习炒股赚钱

相信很多人都想过让人工智能来帮你赚钱,但到底该如何做呢?瑞士日内瓦的一位金融数据顾问 Gaëtan Rickter 近日发表文章介绍了他利用 Python 和机器学习来帮助炒股的经验,其最终成果的收益率跑赢了长期处于牛市的标准普尔 500 指数。虽然这篇文章并没有将他的方法完全彻底公开,但已公开的内容或许能给我们带来如何用人工智能炒股的启迪。

我终于跑赢了标准普尔 500 指数 10 个百分点!听起来可能不是很多,但是当我们处理的是大量流动性很高的资本时,对冲基金的利润就相当可观。更激进的做法还能得到更高的回报。

这一切都始于我阅读了 Gur Huberman 的一篇题为《Contagious Speculation and a Cure for Cancer: A Non-Event that Made Stock Prices Soar》的论文。该研究描述了一件发生在 1998 年的涉及到一家上市公司 EntreMed(当时股票代码是 ENMD)的事件:

「星期天《纽约时报》上发表的一篇关于癌症治疗新药开发潜力的文章导致 EntreMed 的股价从周五收盘时的 12.063 飙升至 85,在周一收盘时接近 52。在接下来的三周,它的收盘价都在 30 以上。这股投资热情也让其它生物科技股得到了溢价。但是,这个癌症研究方面的可能突破在至少五个月前就已经被 Nature 期刊和各种流行的报纸报道过了,其中甚至包括《泰晤士报》!因此,仅仅是热情的公众关注就能引发股价的持续上涨,即便实际上并没有出现真正的新信息。」

在研究者给出的许多有见地的观察中,其中有一个总结很突出:

「(股价)运动可能会集中于有一些共同之处的股票上,但这些共同之处不一定要是经济基础。」

我就想,能不能基于通常所用的指标之外的其它指标来划分股票。我开始在数据库里面挖掘,几周之后我发现了一个,其包含了一个分数,描述了股票和元素周期表中的元素之间的「已知和隐藏关系」的强度。

我有计算基因组学的背景,这让我想起了基因和它们的细胞信号网络之间的关系是如何地不为人所知。但是,当我们分析数据时,我们又会开始看到我们之前可能无法预测的新关系和相关性。

如果你使用机器学习,就可能在具有已知和隐藏关系的上市公司的寄生、共生和共情关系之上抢占先机,这是很有趣而且可以盈利的。最后,一个人的盈利能力似乎完全关乎他在生成这些类别的数据时想出特征标签(即概念(concept))的强大组合的能力。

我在这类模型上的下一次迭代应该会包含一个用于自动生成特征组合或独特列表的单独算法。也许会基于近乎实时的事件,这可能会影响那些具有只有配备了无监督学习算法的人类才能预测的隐藏关系的股票组。

『拾』 怎么用python panda 算股票市场收益率

1.收集数据,开盘价,收盘价,交易量
2.用pandas处理数据,处理缺失值
3.用股票收益率的公式带入
说白了,pandas只是个好用的工具,方法都是一样的,只是效率问题
有多少人工,就有多少智能