当前位置:首页 » 价格知识 » 股票价格蒙特卡罗模拟
扩展阅读
股票100万以上账户 2025-01-11 21:24:23
如何转帐到股票账户 2025-01-11 20:24:22

股票价格蒙特卡罗模拟

发布时间: 2023-05-24 05:11:03

1. 蒙特卡洛公式计算股价准确吗

蒙特卡洛公式计算股价准确。蒙特卡罗方法是由冯诺依曼和乌拉姆等人发明的,蒙特卡罗这个名字是出自摩纳哥庆团的蒙特卡罗赌场,这个方法是一类基于概率的方法的统称,不是特指一种方法。蒙特卡罗方法也成统计模誉晌橘拟方法,是指使用随机数谨毁(或者更常见的伪随机数)来解决很多计算问题的方法。工作原理就是两件事:不断抽样、逐渐逼近。

2. 在金融市场上,如何利用随机过程和蒙特卡罗模拟方法进行风险管理

随机过程和蒙特卡罗模拟方法在金融市场中是广泛应用的风险管理工具。下面是一些利用这些工具进行风险管理的示例:
随机过程用于建立金融市场模型,这些模型可以用来预测未来价格走势。例如,布朗运动是一种常用的随机过程,它可以用于建立股票价格模型。通过对这些模型进行仿真,可以估计不同情况下的收益分布,从而帮助投资者制定风险管理策略。
蒙特卡罗模拟方法用于模拟各种情况下的收益分布。通过模拟大量的随机变量,可以计算出不同投资组合在未来可岩滑能获得的收益,从而评估风险水平。例如,可以通过蒙特卡罗模拟来评估投资组合的价值在未来1年内可能的最大亏损额。
随机过程和蒙特卡罗模拟方法可以结合使用,帮助投资者估计不同投资策略的收益和风险水平。例如,帆枣陪可以建立一个包含多种投资组合的模型,通过蒙特卡罗模拟来估计不同组合的预期收益和风险水平,然后根据这些估计结果态蠢选择最优的投资组合。
总之,随机过程和蒙特卡罗模拟方法是重要的金融风险管理工具,它们可以帮助投资者评估投资策略的风险和收益,并制定相应的风险管理策略。

3. 什么是蒙特卡洛模拟( Monte Carlo simulation)

我们一直面对着不确定,不明确和变异。甚至我们无法获得信息,我们不能准确的预测未来。蒙特卡洛模拟( Monte Carlo simulation)让您看到了您决策的所有可能的输出,并评估风险,允许在不确定的情况下制定更好的决策。蒙特卡洛模拟( Monte Carlo simulation)是一种计算机数学技术,允许人们在定量分析和决策制定过程中量化风险。这项技术被专家们用于各种不同的领域,比如财经,项目管理,能源,生产,工程,研究和开发,保险,石油&天然气,物流和环境。蒙特卡洛模拟( Monte Carlo simulation)提供给了决策制定者大范围的可能输出和任意行动选择将会发生的概率。它显示了极端的可能性-最的输出,最保守的输出-以及对于中间路线决策的最可能的结果。这项技术首先被从事原子弹工作的科学家使用;它被命名为蒙特卡洛,摩纳哥有名的娱乐旅游胜地。它是在二战的时候被传入的,蒙特卡洛模拟( Monte Carlo simulation)现在已经被用于建模各种物理和概念系统。蒙特卡洛模拟( Monte Carlo simulation)是如何工作的蒙特卡洛模拟( Monte Carlo simulation)通过构建可能结果的模型-通过替换任意存在固有不确定性的因子的一定范围的值(概率分布)-来执行风险分析。它一次又一次的计算结果,每次使用一个从概率分布获得的不同随机数集。根据不确定数和为他们制定的范围,蒙特卡洛模拟( Monte Carlo simulation)能够在它完成计算前调用成千上万次的重复计算。蒙特卡洛模拟( Monte Carlo simulation)产生可能结果输出值的分布。通过使用概率分布,变量能够拥有不同结果发生的不同概率。概率分布是一种用来描述风险分析的变量中的不确定性的更加可行的方法。常用的概率分布包括:正态分布(Normal)-或"钟型曲线".用户简单的定义均值或期望值和标准差来描述关于均值的变异。在中部靠近均值的值是最有可能发生的值。它是对称的,可以用来描述多种自然现象,比如人的身高。可以通过正态分布描述的变量示例包括通货膨胀率和能源价格。对数正态分布(Lognormal)-值是正偏的,不像正态分布那样是对称的。它被用来代表不会小于零但可能有无限大正值的结果。可以通过对数正态分布描述的变量示例包括房地产价值,股票价格和石油储量。均匀分布(Uniform)-所有的值发生的机会相等,用户只需制定最小和最大值。可以通过均匀分布描述的变量示例包括一个新产品的制造费用或未来销售收入。三角分布(Triangular)-用户指定最小,最可能和最大值。在最可能附近的值最可能发生。可以通过三角分布描述的变量示例包括每时间单位内的过去销售历史和库存水平。PERT分布-用户指定最小,最可能和最大值,类似三角分布。在最可能附近的值最可能发生。然而在最可能和极值之间的值比三角分布更有可能发生;那就是说,the extremes are not as emphasized. 可以通过三角分布描述的变量示例包括在项目管理模型中的一项任务的持续时间。离散分布(Discrete)-用户指定最可能发生的值和每个值的可能性。比如关于诉讼结果的示例,20%的机会陪审团判决无罪,30%的机会陪审团判决有罪,40%的机会审批有效,10%的机会审批无效。在蒙特卡洛模拟( Monte Carlo simulation)过程中,值被从输入概率分布中随机抽取。每个样本集被称为一次迭代,从样本获得的结果被记录。蒙特卡洛模拟( Monte Carlo simulation)执行这样的操作成百上千次,可能结果形成一个概率分布。用这种方法,蒙特卡洛模拟( Monte Carlo simulation)生成了一个更加全面关于将会发生的结果的视图。它不仅仅告诉什么结果会发生,而且还有结果发生的可能性。蒙特卡洛模拟( Monte Carlo simulation)提供了许多超越确定性或"单点估计"分析的优势:概率结果,结果不仅显示会发生什么,而且还有每个结果发生的可能性图形化报告,因为蒙特卡洛模拟( Monte Carlo simulation)生成的数据,它很容易创建不同结果和他们发生机会的图形。这对于和其他投资者沟通结果是很重要的。敏感性分析,如果只有很少的一些案例,确定性分许就很难发现哪个变量对结果影响最大。在蒙特卡洛模拟( Monte Carlo simulation)中,很容易发现哪个输入对底线结果有最大的影响。情境分析,在确定性模型中,对于为不同输入值的不同组合建模来真实的查看不同情境的效果是很困难的。使用蒙特卡洛模拟( Monte Carlo simulation),分析员能够正确的查看当确定的输出发生时某个输入对应的值。这对于进一步的分析来说是无价的。相关性输入,在蒙特卡洛模拟( Monte Carlo simulation)中,可能要建模输入变量之间的相关关系。它对于准确的描绘在某些因子增长时,其它的因子是如何增长或下降的情况时是重要的。

4. 什么是蒙特卡洛模拟( Monte Carlo simulation)

蒙特卡洛模拟又称为随机抽样或统计试验方法,属于计算数学的一个分支,它是在上世纪四十年代中期为了适应当时原子能事业的发展而发展起来的。传统的经验方法由于不能逼近真实的物理过程,很难得到满意的结果,而蒙特卡罗方法由于能够真实地模拟实际物理过程,故解决问题与实际非常符合,可以得到很圆满的结果。

蒙特卡洛随机模拟法的原理是当问题或对象本身具有概率特征时,可以用计算机模拟的方法产生抽样结果,根据抽样计算统计量或者参数的值;随着模拟次数的增多,可以通过对各次统计量或参数的估计值求平均的方法得到稳定结论。

蒙特卡洛随机模拟法 - 实施步骤抽样计算统计量或者参数的值;随着模拟次数的增多,可以通过对各次统计量或参数的估计值求平均的方法得到稳定结论。

(4)股票价格蒙特卡罗模拟扩展阅读

基本原理思想

当所要求解的问题是某种事件出现的概率,或者是某个随机变量的期望值时,它们可以通过某种“试验”的方法,得到这种事件出现的频率,或者这个随机变数的平均值,并用它们作为问题的解。这就是蒙特卡罗方法的基本思想。

蒙特卡罗方法通过抓住事物运动的几何数量和几何特征,利用数学方法来加以模拟,即进行一种数字模拟实验。它是以一个概率模型为基础,按照这个模型所描绘的过程,通过模拟实验的结果,作为问题的近似解。可以把蒙特卡罗解题归结为三个主要步骤:构造或描述概率过程;实现从已知概率分布抽样;建立各种估计量。


5. 简述二叉树期权定价模型的基本原理和方法+借助蒙特洛模拟技术如何实现

二叉树期权定价模型是一种常用的期权定价方法,它基于期权价格的二叉树模型,通过对二叉树的构建和模拟,计算出期权的理论价格。二叉树期权定价模型的衡饥基本原理如下:

1. 构建二叉树:将期权的时间价值和价格看作一个二元变量,构建出一个二叉树模型。二叉树模型由左右两个子节点构成,左子节点表示期权价格为0的状态,右子节点表示期权价格为到期日价格的状态。

2. 计算期权价格:根据二叉树模型的构建,对二叉树进行模拟,计算出期权在每个时间节点上的价格。在每个时间节点上,期权的价格等于该节点的左子节点的价格加上该节点的右子节点的价格。

3. 计算理论价格:在每个时间节点上,将期权的价格进行累加,得到期权在整个时间段模码内的理论价格。

4. 检验理论价格的合理性:通过检验理论价格与实际价格之间的差异,确定二叉树期权定价模型的准确性和可靠性。

二叉树期权定价模型的实现需要借助蒙特卡洛模拟技术。蒙特卡洛模拟是一种基于随机抽样的计算方法,通过对大量随机变量的随机抽样,计算出每个可能结果的概率分布,进而进行模拟和预测。

在二叉树期权定价模型中,蒙特卡洛模拟技术可以用来模拟期权价格的二旦拦哪叉树模型。具体的实现方法如下:

1. 构建二叉树模型:根据期权的基本要素,构建出一个二叉树模型。

2. 随机抽样:对二叉树进行随机抽样,生成一个随机数序列。

3. 模拟和预测:根据随机数序列,对二叉树进行模拟和预测,计算出每个时间节点上的期权价格。

4. 检验理论价格:对每个时间节点上的期权价格进行累加,计算出期权在整个时间段内的理论价格,并与实际价格进行比较,检验模型的准确性和可靠性。

6. 用Python中的蒙特卡洛模拟两支股票组成的投资组合的价格趋势分析

蒙特卡洛模拟是一种模拟把真实系统中的概率过程用计算机程序来模拟的方法。对于投资组合的价格趋势分析,可以使用Python中的蒙特卡洛模拟。首先,回顾投资组合的价格趋势。投资组合中的股票价格的趋势是受多种因素影响的,可分为经济、政治和技术因素,其中经济因素最重要。因此,蒙特卡洛模拟可以模拟这些因素对投资组合价格趋势的影响,并通过计算机绘制投资组合价格趋势的曲线。
Python中的蒙特卡洛模拟首先需要计算投资组合中各股票价格的每一期的收益率,其次,计算出投资组合的收益率;随后,计算预测投资组合的期权价格,并将所有的期权价格叠加起来,从而绘制投资组合的价格曲线。最后,在投资组合的价格曲线的基础上,可以分析投资组合在不同时期的价格走势,并进行投资组合结构的调整,从而获得最优投资组合。

7. 在蒙特卡洛模拟中,如何确定模拟步数(simulations)以获得对金融衍生品定价的准确估计

在蒙特卡洛模拟中,模拟步数的选择是非常重要的,因为它会影响到模拟结果的精度和可靠性。一般来说,模拟步数应该足够大,以确保模拟出的随机路径覆盖了全银樱缺部的可能性,而同时又要保证步数不能过大,以免浪费计算资源和时间。以颂颤下是一些常用的确定模拟步数的方法:

1. 根据精度需求来设定步数:根据所需的精度和置信度要求,计算出所需要的模拟步数。通常情况下,模拟步数越大,精度就越高,但同时计算成本也越高。

2. 根据历史数据来设定步数:使用历史数据来评锋辩估模拟步数。根据历史数据的波动性和变化情况,评估出模拟步数。这种方法的不足之处在于,历史数据和当前市场情况可能存在差异,因此需要谨慎使用。

3. 数据调整方法:根据模拟过程中的结果,通过统计分析来进行数据调整,从而得出更精确的模型。这种方法要求对模型和数据具有一定的认识和理解,在实际操作中较为常见。

4. 多重模拟方法:在同一模型中多次进行模拟,并将结果进行加权平均,以减少随机误差。这种方法需要计算资源和时间成本,但能够提高结果精度和稳定性。

确定蒙特卡洛模拟步数的方法需要根据具体情况进行折衷和取舍,以达到精度和效率的最佳平衡。

8. 蒙特卡洛模拟计算出的期权价值可以为负吗

可以
但是当期权内在价值为负数的时,权利金的价格衡猜未必是负数,这是因圆孙为期权橘拦链的时间价值依旧为正,且两者相加可以大于零。看涨期权和看跌期权计算内在价值的方法不一样,看涨期权的内在价值=市场价格-执行价格,看跌期权则相反。

9. 蒙特卡洛模拟和滤波历史模拟法区别

蒙特卡洛模拟和滤波历史模拟法都是金融领域中常用的风险估计方法,但二者的算法原理和实现方式存在一定的区别。

蒙特卡洛模拟法是一种基于概率统计的方法,通过随机数生成器模拟股价等随机变量的概率分布,进而计算出期权、衍生品等金融工具的风险价值和收益分布。蒙特卡洛模拟法需要根据已知的随机变量的分布和相关参数,经过大量的随机模拟计算,生成尽可能多的概率吵镇分布样本,然后再对样本进行统计学分析和建模。

而滤波历史模拟法则是一种基于历史时间序列数据的风险度量方法,一般用于计算金融市场中各种金融工具未来的风险和收益。滤波历史模拟法的核心思想是根据给定的历史数据建立一个时间序列的随机游走模型,并通过滤波算法来估计未来的概率分布。具体地,滤波历史模拟法是在历史数据的基础上计算出一个模拟的随机路径,并将这条路径当作同等可能性的样本路径,通过统计各样本路径的收益率,进而得到概率分布的样本集合。

总的来说,蒙特卡洛模拟法更侧重于模拟出金融工具的全分布,以应对升薯粗各种意外情况和极端情形的可能,因此也更加通用和灵活。而滤波历史模拟法则更偏重于建立一个已知的时间序列模型,并通过模型来预测未来的收益率,更加稳定和运用于一些特定场手配景。

10. 怎么用 Excel 做蒙特卡洛模Ƌ

下面是在Excel中模拟一只股票价格的例子。假设股票价格
的对数收益率服从正态分布,均值为0,每日变动标准差为0.1,
模拟股票价格1年的路径,过程如下:
用到两个内置函数,即用rand()来产生0到1之间的随机数,然后用norminv()来获得服从既定分布的随机数,即收益率样本=norminv(rand(), 0, 0.1)。假定股票价格的初始值是100元,那么模拟的价格就是 S=100 * exp(cumsum(收益率样本))。
其中的cumsum()不是Excel的内置函数,其意思就是收益率样本的累积,每个时刻的值都是当前样本及此前所有样本的和,如,收益率样本从单元格C3开始,当前计算C15对应的模拟价格,则模拟价格计算公式是:100 * exp(sum($C$3:C15))。
由此可以得到股票价格的一条模拟路径。

其他非正态分布也可以通过类似方式得到分布的抽样,即分布函数的逆函数,这些函数Excel都内置了。所以,做蒙特卡洛模拟的时候,关键是先确定所需模拟的分布,然后进行抽样,然后应用层面的各种公式就可以在抽样的基础上进行计算了。

--------以下是补充的--------
根据上面提到的思路,其实可以很便捷地为期权做定价。下面就用蒙特卡洛方法为一个普通的欧式看涨期权定价(蒙特卡洛在为普通期权plain vanilla option定价时不占优势,因为相对于解析法而言计算量很大。但是,如果要给结构比较复杂的奇异期权定价时,可能蒙特卡洛法就比较实用,有时可能成为唯一的方法)。

1)假设这个期权是欧式看涨期权,行权价格为50元,标的股票当前的价格也是50元,期权剩余时间是1天。
2)假设标的股票的价格服从对数正态分布,即股票的每日收益率服从正态分布,均值为0,每日标准差为1%。

根据分布假设,首先用rand()函数产生在0到1之间的均匀分布样本。为了提高精确度,这里抽样的数量为1000个(其实1000个是很少的了,通常需要10万个甚至50万个,但是在Excel表格中操作这么多数字,不方便,这是Excel的不足之处)。
下一步,用norminv(probability, mean, std)函数来获得股票收益率分布的1000个抽样,其中的probability参数由rand()产生的抽样逐个代入,mean=0.0, std = 0.01。注意这里抽样得到的日度收益率。也就是说,这个样本对应的下一个交易日股票价格的收益率分布。
下一步,股票价格=50×exp(收益率样本),得到股票价格分布的抽样,有1000个样本。

根据我做的实验,这1000个样本的分布图形(histogram)跟对数正态分布是比较接近的,如下图所示:
图的横轴是股票价格,纵轴是样本中出现的频率。
得到了股票价格未来一天分布的样本之后,就可以以此样本来计算期权的价格了。
欧式看涨期权的定义为:
C=max(S-K,0)

所以,根据这个计算公式可以计算出在到期那天在特定的价格下期权的价值。在Excel中,相当于 期权价值=max(股票价格样本 - 50,0)。由此就可以得到了该期权未来1天价值的样本。
然后,将未来价值贴现回来(用无风险利率贴现,假设无风险利率为0.05,则贴现公式是=exp(-0.05/360)×期权价值,得到期权价格的1000个样本。
最后,对期权价格的1000个样本求平均,Excel函数average(期权价格样本),就可以得到期权的价格了。
我这里算出来的是:0.2015元。
而根据Black-Scholes期权定价公式算出来的理论价格则是0.2103元。二者比较接近,但是还是有差距。

而且,每次刷新Excel表格,就重新做一次模拟,得到的模拟价格变动比较大,有时是0.2043元,有时是0.1989元。由于这个抽样的数量比较小(1000个样本),所以估算的结果受到样本的影响会比较大。如果把抽样数量提高100倍甚至500倍,那么样本变动的影响可能会小一个或者两个数量级。但是计算量就大了,如果计算机性能不够高,那么利用Excel来做的话,比较困难。
这就是我的工作台:

------ 再来一个 --------
看到有人提到利用蒙特卡洛方法来估计圆周率Pi,挺有意思,也简单,所以就在Excel中做了一个实验。
基本原理在于在直角坐标系中的第一个象限中的一个单位圆,如下图所示:
在这个面积为1的正方形中,有四分之一的圆,圆的半径与正方向的边长都是1。那么根据圆的面积公式,这个图形中阴影部分的面积应该是 Pi/4。
下面开始进入蒙特卡洛的解法。
即,如果我们对这个正方形平面中的点进行均匀地抽样,随着抽样点的增多,那么落入阴影内的点的数量与总抽样数量的比,应该基本上等于阴影的面积Pi/4与整个正方形面积1的比,即Pi/4。用数学表示,就是
阴影内的样本点数量 ÷ 总数量 = Pi/4
所以,Pi = 4 × 阴影内的样本点数量 ÷ 总数量。

下面就在Excel中进行实验。
用rand()函数生成2000个随机数,作为随机样本点的X轴坐标,
再用rand()函数生成2000个随机数,作为随机样本点的Y轴坐标。
如此就得到了2000个随机样本点,这些点的X轴坐标和Y轴坐标都大于零且小于1,所以是在前面所说的正方形之中的点。
下一步,判断样本点是否处于阴影之内,由于这个阴影就是单位圆在直角坐标系第一想象的四分之一,所以圆阴影内的点都符合如下不等式:
翻译到Excel中,就是用IF函数来判断,例如:
IF(A2^2 + B2^2 <=1, 1, 0)

即,如果样本点在阴影中,得到1,否则得到0。这样就把样本点区分开来了。
最后,把所有得到的1和0加总,就知道所有样本点中处于阴影中样本点的数量了。
最后根据
Pi = 4 × 阴影内的样本点数量 ÷ 总数量
就可以算出Pi来了。
我这个试验中算出来的 Pi=3.142。
以下是样本点的散点图:
由于样本数量有限,所以计算出来的Pi的精度并不高。
以下是工作界面,挺简单的。
来源:知乎