㈠ 时间序列在股市有哪些应用
时间序列分析在股票市场中的应用
摘要
在现代金融浪潮的推动下,越来越多的人加入到股市,进行投资行为,以期得到丰厚的回报,这极大促进了股票市场的繁荣。而在这种投资行为的背后,越来越多的投资者逐渐意识到股市预测的重要性。
所谓股票预测是指:根据股票现在行情的发展情况地对未来股市发展方向以及涨跌程度的预测行为。这种预测行为只是基于假定的因素为既定的前提条件为基础的。但是在股票市场中,行情的变化与国家的宏观经济发展、法律法规的制定、公司的运营、股民的信心等等都有关联,因此所谓的预测难于准确预计。
时间序列分析是经济预测领域研究的重要工具之一,它描述历史数据随时间变化的规律,并用于预测经济数据。在股票市场上,时间序列预测法常用于对股票价格趋势进行预测,为投资者和股票市场管理管理方提供决策依据。
㈡ 应用计量经济学时间序列分析在股票预测上有多大的作用
作用没有想象中的大,你可以用股票的滞后变量来进行回归分析,滞后2~3期就够了,不过数据必须具体点,最好细分到每季度、每月的上证指数,还有时间上怎么也要十年左右吧!
我以前在论文附录中做过分析,数据都是自己按季度整理的,挺麻烦的呢,如果需要的话就发给你~
还有就是,我觉得写关于股票的预测方面的实际用处并不是很大,毕竟股票的影响因素太多,单单的凭借以前的走势而预期太不好了。。我自己也炒股票,就像那些macd、kdj之类的指标根本就起不到太大的作用,如果那个能预期的话,股市岂不就成了提款机了?现在你做的这个就像是那些指标一样,要知道,股市是活的,人是活的,而指标确实死的!说这么多的意思就是股市不是能简单预测的,你做的那个用处不大。。
如果你想做的话,建议换个题目,我当时的写的是对弗里德曼的货币需求理论在中国市场的分析。你可以写写货币供应量对通货膨胀的时滞性,分析下在我国市场的滞后期大概是多少~数据在国家统计局和中国人民银行都可以找到的,样本空间一定要足够大,在对滞后变量分析时候主要考虑各自的T检验是否通过,一般从通过之后大概就是那个的滞后期!这个比较直接反而有些许用处~
要是能分析出国家的一般性政策对实体市场的影响就更好了,更有用了~
呵呵,以上只是自己的建议~有什么其他的问题就给我留言吧~
㈢ 金融时间序列分析用R语言画简单收益率和对数收益率的ACF图!
acf(int[,2], lag.max = 15,type = "correlation", plot = TRUE,main='int monthly
acf(int.l[,2], lag.max = 15,type = "correlation", plot = TRUE,main='int monthly
log return')
Box.test(int[,2], lag = 5, type = "Ljung-Box")
Box.test(int[,2], lag = 10, type = "Ljung-Box")
Box.test(int.l[,2], lag = 5, type = "Ljung-Box")
Box.test(int.l[,2], lag = 10, type = "Ljung-Box")
运行结果有以下错误,怎么办?
> int <- read.table("d-intc7208.txt", head=T)
错误于file(file, "rt") : 无法打开链结
此外: 警告信息:
In file(file, "rt") :
无法打开文件'd-intc7208.txt': No such file or directory
+ acf(int.l[,2], lag.max = 15,type = "correlation", plot = TRUE,main='int monthly
错误: 意外的符号 in:
"
acf(int.l[,2], lag.max = 15,type = "correlation", plot = TRUE,main='int"
> log return')
错误: 意外的符号 in "log return"
㈣ 如何用R 语言 建立 股票价格的时间序列
在下想用R语言对股票价格进行时间序列分析。
问题出在第一步,如何将股票价格转换为时间序列。
我想用的语句是 pri <- ts (data, start=(), frequency= )
但是我不知道frequency 项该如何填?
因为股票的交易日是一周五天的。 那么这个frequency 该如何设置呢?
我知道通常frequency= 12 为月度数据,frequency= 4 为季度数据,frequency= 1 为年度数据 但日数据怎么写我就不知道了
初学R语言,还望各位大侠多多帮助。
㈤ 股票价格的随机游走的含义
“随机游走”(random walk)是指基于过去的表现,无法预测将来的发展步骤和方向。应用到股市上,则意味着股票价格的短期走势不可预知,意味着投资咨询服务、收益预测和复杂的图表模型全无用处。在华尔街上,“随机游走”这个名词是个讳语,是学术界杜撰的一个粗词,是对专业预言者的一种侮辱攻击。若将这一术语的逻辑内涵推向极致,便意味着一只戴上眼罩的猴子,随意向报纸的金融版面掷一些飞镖,选出的投资组合就可与投资专家精心挑选出的一样出色。
㈥ 90-预测分析-R语言实现-时间序列1
时间序列(time series)是随机变量Y 1 、Y 2 、……Y t 的一个序列,它是由等距的时间点序列索引的。
一个时间序列的均值函数就是该时间序列在某个时间索引t上的期望值。一般情况下,某个时间序列在某个时间索引t 1 的均值并不等于该时间序列在另一个不同的时间索引t 2 的均值。
自协方差函数及自相关函数是衡量构成时间序列的随机变量在不同时间点上相互线性依赖性的两个重要函数。自相关函数通常缩略为ACF函数。ACF函数是对称的,但是无单位,其绝对值被数值1约束,即当两个时间序列索引之间的自相关度是1或-1,就代表两者之间存在完全线性依赖或相关,而当相关度是0时,就代表完全线性无关。
平稳性:实质描述的是一个时间序列的概率表现不会随着时间的流逝而改变。常用的平稳性的性质有严格平稳和弱平稳两个版本。tseries包的adf.test()函数可以检验时间序列的平稳性,返回的p值小于0.05则表示是平稳的。
白噪声是一个平稳过程,因为它的均值和方差都是常数。
随机漫步的均值是常数(不带漂移的随机漫步),但它的方差是随着时间的变化而不同的,因此它是不平稳的。
自回归模型(Autoregressive models, AR)来源于要让一个简单模型根据过去有限窗口时间里的最近值来解释某个时间序列当前值的想法。
自回归条件异方差模型:ARIMA模型的关键前提条件是,虽然序列本身是非平稳的,但是我们可以运用某个变换来获得一个平稳的序列。像这样为非平稳时间序列构建模型的方法之一是作出一个假设,假设该模型非平稳的原因是该模型的方差会以一种可预见的方式随时间变化,这样就可以把方差随时间的变化建模为一个自回归过程,这种模型被称为自回归条件异方差模型(ARCH)。加入了移动平均方差成分的ARCH模型称为广义自回归条件异方差模型(GARCH)。
任务:预测强烈地震
数据集:2000-2008年期间在希腊发生的强度大于里氏4.0级地震的时间序列。
不存在缺失值。
将经度和纬度之外的变量转换为数值型。
从图上可以看出,数据在30次左右波动,并且不存在总体向上的趋势。
通过尝试多个不同的组合来找到最优的阶数参数p,d,q,确定最优的准则是使用参数建模,能使模型的AIC值最小。
定义一个函数,它会针对某个阶数参数拟合出一个ARIMA模型,并返回模型的AIC值。如果某组参数导致模型无法收敛,就会产生错误,并且无法返回AIC,这时需要人为设置其AIC为无限大(InF)。
调用函数,选取最合适的模型。
然后找出最优的阶数参数:
得到最合适的模型为ARIMA(1, 1, 1)。再次使用最优参数训练模型。
使用forecast包预测未来值。
带颜色的条带是预测的置信区间,蓝色线表示均值,结果表示在后续的10个月里,地震的数量会有小幅增加。
检查自相关函数:
ACF绘图:虚线显示了一个95%的置信区间,特定延迟对应的ACF函数值如果处于该区间内,就不会被认为具有统计显著性(大于0)。这个ACF轮廓表明,针对本数据集,简单的AR(1)过程可能是一种合适的拟合方式。
PACF为偏自相关函数,是将时间延迟K的PACF定义为在消除了小于K的延迟中存在的任何相关性影响的情况下所产生的相关性。
㈦ 时间序列分析方法
时间序列是指一组在连续时间上测得的数据,其在数学上的定义是一组向量x(t), t=0,1,2,3,...,其中t表示数据所在的时间点,x(t)是一组按时间顺序(测得)排列的随机变量。包含单个变量的时间序列称为单变量时间序列,而包含多个变量的时间序列则称为多变量。
时间序列在很多方面多有涉及到,如天气预报,每天每个小时的气温,股票走势等等,在商业方面有诸多应用,如:
下面我们将通过一个航班数据来说明如何使用已有的工具来进行时间序列数据预测。常用来处理时间序列的包有三个:
对于基于AR、MA的方法一般需要数据预处理,因此本文分为三部分:
通过简单的初步处理以及可视化可以帮助我们有效快速的了解数据的分布(以及时间序列的趋势)。
观察数据的频率直方图以及密度分布图以洞察数据结构,从下图可以看出:
使用 statsmodels 对该时间序列进行分解,以了解该时间序列数据的各个部分,每个部分都代表着一种模式类别。借用 statsmodels 序列分解我们可以看到数据的主要趋势成分、季节成分和残差成分,这与我们上面的推测相符合。
如果一个时间序列的均值和方差随着时间变化保持稳定,则可以说这个时间序列是稳定的。
大多数时间序列模型都是在平稳序列的前提下进行建模的。造成这种情况的主要原因是序列可以有许多种(复杂的)非平稳的方式,而平稳性只有一种,更加的易于分析,易于建模。
在直觉上,如果一段时间序列在某一段时间序列内具有特定的行为,那么将来很可能具有相同的行为。譬如已连续观察一个星期都是六点出太阳,那么可以推测明天也是六点出太阳,误差非常小。
而且,与非平稳序列相比,平稳序列相关的理论更加成熟且易于实现。
一般可以通过以下几种方式来检验序列的平稳性:
如果时间序列是平稳性的,那么在ACF/PACF中观测点数据与之前数据点的相关性会急剧下降。
下图中的圆锥形阴影是置信区间,区间外的数据点说明其与观测数据本身具有强烈的相关性,这种相关性并非来自于统计波动。
PACF在计算X(t)和X(t-h)的相关性的时候,挖空在(t-h,t)上所有数据点对X(t)的影响,反应的是X(t)和X(t-h)之间真实的相关性(直接相关性)。
从下图可以看出,数据点的相关性并没有急剧下降,因此该序列是非平稳的。
如果序列是平稳的,那么其滑动均值/方差会随着时间的变化保持稳定。
但是从下图我们可以看到,随着时间的推移,均值呈现明显的上升趋势,而方差也呈现出波动式上升的趋势,因此该序列是非平稳的。
一般来讲p值小于0.05我们便认为其是显著性的,可以拒绝零假设。但是这里的p值为0.99明显是非显著性的,因此接受零假设,该序列是非平稳的。
从上面的平稳性检验我们可以知道该时间序列为非平稳序列。此外,通过上面1.3部分的序列分解我们也可以看到,该序列可分解为3部分:
我们可以使用数据转换来对那些较大的数据施加更大的惩罚,如取对数、开平方根、立方根、差分等,以达到序列平稳的目的。
滑动平均后数据失去了其原来的特点(波动式上升),这样损失的信息过多,肯定是无法作为后续模型的输入的。
差分是常用的将非平稳序列转换平稳序列的方法。ARIMA中的 'I' 便是指的差分,因此ARIMA是可以对非平稳序列进行处理的,其相当于先将非平稳序列通过差分转换为平稳序列再来使用ARMA进行建模。
一般差分是用某时刻数值减去上一时刻数值来得到新序列。但这里有一点区别,我们是使用当前时刻数值来减去其对应时刻的滑动均值。
我们来看看刚刚差分的结果怎么样。
让我们稍微总结下我们刚刚的步骤:
通过上面的3步我们成功的将一个非平稳序列转换成了一个平稳序列。上面使用的是最简单的滑动均值,下面我们试试指数滑动平均怎么样。
上面是最常用的指数滑动平均的定义,但是pandas实现的指数滑动平均好像与这个有一点区别,详细区别还得去查pandas文档。
指数滑动均值的效果看起来也很差。我们使用差分+指数滑动平均再来试试吧。
在上面我们通过 取log+(指数)滑动平均+差分 已经成功将非平稳序列转换为了平稳序列。
下面我们看看,转换后的平稳序列的各个成分是什么样的。不过这里我们使用的是最简单的差分,当前时刻的值等于原始序列当前时刻的值减去原始序列中上一时刻的值,即: x'(t) = x(t) - x(t-1)。
看起来挺不错,是个平稳序列的样子。不过,还是检验一下吧。
可以看到,趋势(Trend)部分已基本被去除,但是季节性(seasonal)部分还是很明显,而ARIMA是无法对含有seasonal的序列进行建模分析的。
在一开始我们提到了3个包均可以对时间序列进行建模。
为了简便,这里 pmdarima 和 statsmodels.tsa 直接使用最好的建模方法即SARIMA,该方法在ARIMA的基础上添加了额外功能,可以拟合seasonal部分以及额外添加的数据。
在使用ARIMA(Autoregressive Integrated Moving Average)模型前,我们先简单了解下这个模型。这个模型其实可以包括三部分,分别对应着三个参数(p, d, q):
因此ARIMA模型就是将AR和MA模型结合起来然后加上差分,克服了不能处理非平稳序列的问题。但是,需要注意的是,其仍然无法对seasonal进行拟合。
下面开始使用ARIMA来拟合数据。
(1) 先分训练集和验证集。需要注意的是这里使用的原始数据来进行建模而非转换后的数据。
(2)ARIMA一阶差分建模并预测
(3)对差分结果进行还原
先手动选择几组参数,然后参数搜索找到最佳值。需要注意的是,为了避免过拟合,这里的阶数一般不太建议取太大。
可视化看看结果怎么样吧。
(6)最后,我们还能对拟合好的模型进行诊断看看结果怎么样。
我们主要关心的是确保模型的残差(resial)部分互不相关,并且呈零均值正态分布。若季节性ARIMA(SARIMA)不满足这些属性,则表明它可以进一步改善。模型诊断根据下面的几个方面来判断残差是否符合正态分布:
同样的,为了方便,我们这里使用 pmdarima 中一个可以自动搜索最佳参数的方法 auto_arima 来进行建模。
一般来说,在实际生活和生产环节中,除了季节项,趋势项,剩余项之外,通常还有节假日的效应。所以,在prophet算法里面,作者同时考虑了以上四项,即:
上式中,
更多详细Prophet算法内容可以参考 Facebook 时间序列预测算法 Prophet 的研究 。
Prophet算法就是通过拟合这几项,然后把它们累加起来得到时间序列的预测值。
Prophet提供了直观且易于调整的参数:
Prophet对输入数据有要求:
关于 Prophet 的使用例子可以参考 Prophet example notebooks
下面使用 Prophet 来进行处理数据。
参考:
Facebook 时间序列预测算法 Prophet 的研究
Prophet example notebooks
auto_arima documentation for selecting best model
数据分析技术:时间序列分析的AR/MA/ARMA/ARIMA模型体系
https://github.com/advaitsave/Introction-to-Time-Series-forecasting-Python
时间序列分析
My First Time Series Comp (Added Prophet)
Prophet官方文档: https://facebookincubator.github.io
㈧ R语言画时间序列图
用xlim或者ylim命令。比如:
# Specify axis options within plot()
plot(x, y, main="title", sub="subtitle",
xlab="X-axis label", ylab="y-axix label",
xlim=c(xmin, xmax), ylim=c(ymin, ymax))