㈠ 如何分析股票的筹码
股市中筹码指的是在市场中可供交易的流通股。主力要炒作一支股票就必须在低位买入股票(这叫吸筹)直到买入足量的股票(这叫控筹)。 持股人数减少,而人均持股数量增加,就意味着筹码集中。 通常在他们的基本资料中会有这样的介绍,不过那也是通过一定的方法计算出来的,不一定能够准确的反应市场真实的情况。通常情况下筹码集中,但估计涨幅不大的股票有一定的投资值,筹码集中但股价很高就要注意投资风险。股价在底部的股票筹码如果分散,说明少有人问津。 筹码分析即成本分析.基于流通盘是固定的.无论流通筹码在盘中这样分布.累计量必然等于总流通盘. 可以说在也没有什么指标能象筹码分布这样能把主力的一切行为表达的如此清晰了!操作中的使用价值主要表现在以下几个方面. 1.能有效的识别主力建仓和派发的全过程.象放电影一样把主力的一举一动展现在大家面前. 2.能有效的判断该股票的行情性质和行情趋势.在不理解一只股票的筹码分布之前就说主力怎么怎么了.什么主力在洗盘了.什么在吸筹了.都是很无根据的. 3.能提供有效的支撑和阻力位. 总的来说.筹码分布是寻找中长线牛股的利器.对断弦线客可能没有太大的帮助.但筹码分布在股市的运用将开辟技术分析一片新天地! 每个月的月末都要把两市的股票筹码图翻一遍.以便及时发现一只底部筹码集中的股票.这种股票并不是天天有的.有的需要几个月.一年.几年.一旦发现涨幅将是惊人的! 一轮行情主要由三个阶段构成:吸筹阶段、拉升阶段和派发阶段。吸筹阶段的主要任务是在低位大量买进股票。吸筹是否充分,庄家持仓量的多少对其做盘有着极为重要的意义:其一,持仓量决定了其利润量,筹码越多,利润实现量越大;其二,持仓量决定了其控盘程度,吸筹筹码越多,市场筹码越少,庄家对股票的控制能力越强。同时,在吸筹阶段也常伴随着洗盘过程,迫使跟风客出局和上一轮行情高位套牢者不断的割肉,庄家才能在低位吸筹承接。其实,庄家吸筹的过程就是一个筹码换手的过程,在这个过程中,庄家为买方,股民为卖方。只有在低位充分完成了筹码换手,吸筹阶段才会结束,发动上攻行情的条件才趋于成熟。庄家的吸筹区域就是其持有股票的成本区域。拉升阶段的主要任务就是使股价脱离庄家吸筹成本区,打开利润空间。在此过程中,庄家用部分筹码打压做盘,同时又承接抛压筹码,但其大部分筹码仍旧按兵不动的锁定在吸筹区域,等待拉高获利卖出。在拉升过程中,部分股民纷纷追涨,同时部分股民获利吐出。对于坐庄技巧较好的庄家,如有大势配合,庄家只需要点上一把火,拉升工作主要是由股民自行完成的,其间,庄家主要利用控盘能力调控拉升节奏。在拉升阶段,成交异常活跃,筹码加速转手,各价位的成本分布大小不一。(文章由捜股中国整理收藏)派发阶段的主要任务是卖出持仓筹码,实现坐庄利润。股价经过拉升脱离成本区达到庄家的盈利区域,庄家高位出货的可能性不断的增大。随着高位换手的充分,拉升前的低位筹码被上移至高位。而当低位筹码搬家工作完成之时,庄家出货工作也宣告完成,一轮下跌行情也随之降临。在一轮行情的流程中要充分重视两个概念:低位充分换手和高位充分换手。低位充分换手是吸筹阶段完成的标志;高位充分换手是派发阶段完成的标志。它们是拉升和派发的充分必要条件。所谓充分换手就是在一定的价格区域成交高度密集,使分散在各价位上的筹码充分集中在一个主要的价格区域。股价走势循环周期的四个阶段: A阶段:无穷成本均线由向下到走平;俗称筑底阶段; B阶段:无穷成本均线由走平到向上;俗称拉升阶段,可称为上升阶段; C阶段:无穷成本均线由向上到走平;俗称作头(顶)阶段; D阶段:无穷成本均线由走平到向下;俗称派发阶段,可称作下降阶段; 对应筹码分布的特征: A阶段:筹码由分散到集中,发散度下降。 B阶段:筹码由集中到分散,发散度上升。 C阶段:筹码由分散到集中,发散度下降。 D阶段:筹码由集中到分散,发散度上升。 股市里的终极真理:供给大于需求价格下跌,需求大于供给价格上涨。 而供求又最终对应于资金和筹码。至于其它什么基本面、消息、信心、技术等等,都只是间接地影响或反映股市的这一本质。股价运动的本质等于成交量背后的筹码运动状态。 筹码 供求力量的两方:资金和筹码. 在股市里的意义是明显不同的。对于资金,倾向于有行情就有资金这种说法。也就是说,有行情才是关键,这是中国股市中长期走势的主线。筹码,则是股市利益主体博弈的媒介,抓住了筹码这一关键,才有可能从本质上把握住股票的价格走势。因此,从博弈角度看,筹码,才是股市博弈的核心。 筹码论其实是一种还原:将所有的影响股市里供求的因素,全部还原成筹码,以及筹码背后所反映的力量、利益、争夺、控制集中、分散、转移、等等。所以我认为股市研究的核心应该是市场成本! 在熊市中现金为主,而在牛市中筹码的为王,股票获利无非是将手中的现金在低位转化成股票,再将股票在高位兑换为现金的过程,这是从另一角度上看,就是筹码的运动,主流资金就是筹码的搬运工,而筹码的成本就是关键,成本分析将成为技术分析中非常重要的一个分支。 主要功能与目的 1.判断成交密集区的筹码分布和变化。 2.判断行情发展中的重要阻力位与支撑位。 3.通过分析市场的变化,制定相应的操作策略。 筹码是股票博弈的核心,在牛市中筹码为王就是这个道理,谁掌握更多的筹码谁就将在未来的博弈中争取到主动权,谈到筹码应从以下几方面进行研究 一、筹码的成本 这是筹码的核心问题,市场中主流资金或绝大部分的筹码的成本对股票的走势起决定性作用,这里引入成本均线的概念,主要是反映市场的平均持筹成本的成本均线。 平均移动线与成本均线的区别。成本均线在计算中考虑了成交量的作用,并用神经网络方法解决了在计算时间内短线客反复买卖的问题,可以真实的反应最后的持股人的成本。5日、13日、34日成本均线分别代表5日、13日、34日的市场平均建仓成本。如某日13日成本均线为10.2元,表示13日以来买入该只股票的人平均成本为10.2元。无限长的成本均线则表示市场上所有的股票的平均建仓成本。 无穷成本平均线是最重要的成本均线。是市场牛熊的重要分水岭,就象价值曲线一样,股票价格始终围绕起上下一波动,这里又引出另一个概念,无穷成本均线的乘离率,也叫盈亏指标。 该指标反映投资者平均持色的盈亏,5.13日盈亏对短线操作有重大意义,而引物尤其是无穷BIAS才对中长期判断有决定性作用,这个指标在投资方案和思路中占有重要的地位,比如。什么叫超跌?跌倒什么份上差不多了?为什么有的股票跌连跌7.8个跌停仍不超跌?盈亏指标较好地解决了这些问题。 二、筹码分布的形态:密集与分散 筹码分布的运动:集中与发散 成交密集的区域,形成筹码峰,两峰之间的区域则形成谷,这是筹码分布的视觉形态,筹码的运动伴随筹码的集中与发散。必然伴随着筹码密集而形成峰。密集分为高位密集和低位密集。 任何一轮行情都将经历由低位换手到高位换手,再由高位换手到低位换手,筹码的运动过程是实现利润的过程。(当然也是割肉亏损的过程) 低位充分换手是完成吸筹阶段的标志,高位充分换手是派发阶段完成的标志。 成本密集是下一个阶段行情的准备过程,成本发散是行情的展开过程。 三、集中度 表明主要筹码堆积的主要区域的幅度,数值越大表示筹码集中的幅度越大,筹码就越分散,需要特别提醒的是,这个集中的意思,不等同于庄家控盘,与龙虎榜数据完全不是一个意思。 就目前而言,无法将其编成方案,只能通过一只一只股票的观察进行总结,得出的以下结果。 1。筹码集中度高的股票(10以下)的爆发力强,上涨或下跌的幅度比较大。 2.筹码集中度低的股票(尤其是20以上)的上涨力度明显减弱。 3.筹码的集中过程是下一阶段行情的准备过程,而发散过程是行情的展开过程。 需要强调: 1.不是只有集中,股票才会上涨。 2.达到集中,上涨的幅度增大。 3.不集中的股票,也会上涨。 四、活跃筹码 筹码分布能让我们看出别人持股成本的分布情况,是我们做成本分析时很有效的工具。我们仔细观察筹码分布的变化情况时,发现在股价附近的筹码是最不稳定的,也是最容易参与交易的,因为在股价附近的股票持有者,最经受不住诱惑,盈利的想赶快把浮动盈利换成实际盈利;被套的想趁着亏损得还少赶快卖掉,利用资金买另外的股票,把亏损赶快挣回来。而远离股价,在下方的筹码,由于有了一定的利润,持股信心会增强;在上方的筹码,由于被套太深而不愿割肉,所以在股价附近的筹码是最活跃的,而在股价上下,远离股价的筹码是不太活跃的。 活跃筹码就是反映股价附近的筹码占所有流通筹码的百分比。它的取值范围是从0到100,数值越大表示股价附近的活跃筹码越多,数值越小表示股价附近的活跃筹码越少。 活跃筹码的多少还可用来描述筹码的密集程度,如今天的活跃筹码的值是50,则表示在股价附近的筹码呈密集状态。如今天的活跃筹码的值是10,则表示在股价附近的筹码很少,大多数筹码都在远离股价的地方,获利很多,或者亏损很多。 活跃筹码的数值很小时是很值得注意的一种情况。(文章由捜股中国整理收藏)比如,一只股票经过漫长的下跌后,活跃筹码的值很小(小于10),大部分筹码都处于被套较深的状态,这时多数持股者已经不愿意割肉出局了,所以这时候往往能成为一个较好的买入点;再比如:一只股票经过一段时间的上涨,活跃筹码很小(小于10),大部分筹码都处于获利较多的状态,如果这时控盘强弱的值较大(大于20),前期有明显的庄股特征,总体涨幅不太大,也能成为一个较好的买入点。所以,在股价运行到不同的阶段时,考虑一下活跃筹码的多少,能起到很好的辅助效果。 详细信息 http://user.qzone.qq.com/3767808/blog/1340160923
㈡ A Matlab神经元网络分析学的快吗
可以学得快,
如果你只想用C#或Matlab快速实现神经网络来解决你手头上的问题,或者已经了解神经网络基本原理,请直接跳到第二节神经网络实现。
㈢ 什么是BP神经网络
BP算法的基本思想是:学习过程由信号正向传播与误差的反向回传两个部分组成;正向传播时,输入样本从输入层传入,经各隐层依次逐层处理,传向输出层,若输出层输出与期望不符,则将误差作为调整信号逐层反向回传,对神经元之间的连接权矩阵做出处理,使误差减小。经反复学习,最终使误差减小到可接受的范围。具体步骤如下:
1、从训练集中取出某一样本,把信息输入网络中。
2、通过各节点间的连接情况正向逐层处理后,得到神经网络的实际输出。
3、计算网络实际输出与期望输出的误差。
4、将误差逐层反向回传至之前各层,并按一定原则将误差信号加载到连接权值上,使整个神经网络的连接权值向误差减小的方向转化。
5、対训练集中每一个输入—输出样本对重复以上步骤,直到整个训练样本集的误差减小到符合要求为止。
㈣ 谁能教我Matlab 神经网络分析
自学的话,从基本学起,可以看看下面这本书,看完基本的神经网络都熟悉了。
人工神经网络(Artificial Neural Network,即ANN ),是20世纪80 年代以来人工智能领域兴起的研究热点。它从信息处理角度对人脑神经元网络进行抽象, 建立某种简单模型,按不同的连接方式组成不同的网络。在工程与学术界也常直接简称为神经网络或类神经网络。神经网络是一种运算模型,由大量的节点(或称神经元)之间相互联接构成。每个节点代表一种特定的输出函数,称为激励函数(activation function)。每两个节点间的连接都代表一个对于通过该连接信号的加权值,称之为权重,这相当于人工神经网络的记忆。网络的输出则依网络的连接方式,权重值和激励函数的不同而不同。而网络自身通常都是对自然界某种算法或者函数的逼近,也可能是对一种逻辑策略的表达。
㈤ 神经网络的主要内容特点
(1) 神经网络的一般特点
作为一种正在兴起的新型技术神经网络有着自己的优势,他的主要特点如下:
① 由于神经网络模仿人的大脑,采用自适应算法。使它较之专家系统的固定的推理方式及传统计算机的指令程序方式更能够适应化环境的变化。总结规律,完成某种运算、推理、识别及控制任务。因而它具有更高的智能水平,更接近人的大脑。
② 较强的容错能力,使神经网络能够和人工视觉系统一样,根据对象的主要特征去识别对象。
③ 自学习、自组织功能及归纳能力。
以上三个特点是神经网络能够对不确定的、非结构化的信息及图像进行识别处理。石油勘探中的大量信息就具有这种性质。因而,人工神经网络是十分适合石油勘探的信息处理的。
(2) 自组织神经网络的特点
自组织特征映射神经网络作为神经网络的一种,既有神经网络的通用的上面所述的三个主要的特点又有自己的特色。
① 自组织神经网络共分两层即输入层和输出层。
② 采用竞争学记机制,胜者为王,但是同时近邻也享有特权,可以跟着竞争获胜的神经元一起调整权值,从而使得结果更加光滑,不想前面的那样粗糙。
③ 这一网络同时考虑拓扑结构的问题,即他不仅仅是对输入数据本身的分析,更考虑到数据的拓扑机构。
权值调整的过程中和最后的结果输出都考虑了这些,使得相似的神经元在相邻的位置,从而实现了与人脑类似的大脑分区响应处理不同类型的信号的功能。
④ 采用无导师学记机制,不需要教师信号,直接进行分类操作,使得网络的适应性更强,应用更加的广泛,尤其是那些对于现在的人来说结果还是未知的数据的分类。顽强的生命力使得神经网络的应用范围大大加大。
㈥ BP神经网络的原理的BP什么意思
人工神经网络有很多模型,但是日前应用最广、基本思想最直观、最容易被理解的是多层前馈神经网络及误差逆传播学习算法(Error Back-Prooaeation),简称为BP网络。
在1986年以Rumelhart和McCelland为首的科学家出版的《Parallel Distributed Processing》一书中,完整地提出了误差逆传播学习算法,并被广泛接受。多层感知网络是一种具有三层或三层以上的阶层型神经网络。典型的多层感知网络是三层、前馈的阶层网络(图4.1),即:输入层、隐含层(也称中间层)、输出层,具体如下:
图4.1 三层BP网络结构
(1)输入层
输入层是网络与外部交互的接口。一般输入层只是输入矢量的存储层,它并不对输入矢量作任何加工和处理。输入层的神经元数目可以根据需要求解的问题和数据表示的方式来确定。一般而言,如果输入矢量为图像,则输入层的神经元数目可以为图像的像素数,也可以是经过处理后的图像特征数。
(2)隐含层
1989年,Robert Hecht Nielsno证明了对于任何在闭区间内的一个连续函数都可以用一个隐层的BP网络来逼近,因而一个三层的BP网络可以完成任意的n维到m维的映射。增加隐含层数虽然可以更进一步的降低误差、提高精度,但是也使网络复杂化,从而增加了网络权值的训练时间。误差精度的提高也可以通过增加隐含层中的神经元数目来实现,其训练效果也比增加隐含层数更容易观察和调整,所以一般情况应优先考虑增加隐含层的神经元个数,再根据具体情况选择合适的隐含层数。
(3)输出层
输出层输出网络训练的结果矢量,输出矢量的维数应根据具体的应用要求来设计,在设计时,应尽可能减少系统的规模,使系统的复杂性减少。如果网络用作识别器,则识别的类别神经元接近1,而其它神经元输出接近0。
以上三层网络的相邻层之间的各神经元实现全连接,即下一层的每一个神经元与上一层的每个神经元都实现全连接,而且每层各神经元之间无连接,连接强度构成网络的权值矩阵W。
BP网络是以一种有教师示教的方式进行学习的。首先由教师对每一种输入模式设定一个期望输出值。然后对网络输入实际的学习记忆模式,并由输入层经中间层向输出层传播(称为“模式顺传播”)。实际输出与期望输出的差即是误差。按照误差平方最小这一规则,由输出层往中间层逐层修正连接权值,此过程称为“误差逆传播”(陈正昌,2005)。所以误差逆传播神经网络也简称BP(Back Propagation)网。随着“模式顺传播”和“误差逆传播”过程的交替反复进行。网络的实际输出逐渐向各自所对应的期望输出逼近,网络对输入模式的响应的正确率也不断上升。通过此学习过程,确定下各层间的连接权值后。典型三层BP神经网络学习及程序运行过程如下(标志渊,2006):
(1)首先,对各符号的形式及意义进行说明:
网络输入向量Pk=(a1,a2,...,an);
网络目标向量Tk=(y1,y2,...,yn);
中间层单元输入向量Sk=(s1,s2,...,sp),输出向量Bk=(b1,b2,...,bp);
输出层单元输入向量Lk=(l1,l2,...,lq),输出向量Ck=(c1,c2,...,cq);
输入层至中间层的连接权wij,i=1,2,...,n,j=1,2,...p;
中间层至输出层的连接权vjt,j=1,2,...,p,t=1,2,...,p;
中间层各单元的输出阈值θj,j=1,2,...,p;
输出层各单元的输出阈值γj,j=1,2,...,p;
参数k=1,2,...,m。
(2)初始化。给每个连接权值wij、vjt、阈值θj与γj赋予区间(-1,1)内的随机值。
(3)随机选取一组输入和目标样本
提供给网络。
(4)用输入样本
、连接权wij和阈值θj计算中间层各单元的输入sj,然后用sj通过传递函数计算中间层各单元的输出bj。
基坑降水工程的环境效应与评价方法
bj=f(sj) j=1,2,...,p (4.5)
(5)利用中间层的输出bj、连接权vjt和阈值γt计算输出层各单元的输出Lt,然后通过传递函数计算输出层各单元的响应Ct。
基坑降水工程的环境效应与评价方法
Ct=f(Lt) t=1,2,...,q (4.7)
(6)利用网络目标向量
,网络的实际输出Ct,计算输出层的各单元一般化误差
。
基坑降水工程的环境效应与评价方法
(7)利用连接权vjt、输出层的一般化误差dt和中间层的输出bj计算中间层各单元的一般化误差
。
基坑降水工程的环境效应与评价方法
(8)利用输出层各单元的一般化误差
与中间层各单元的输出bj来修正连接权vjt和阈值γt。
基坑降水工程的环境效应与评价方法
(9)利用中间层各单元的一般化误差
,输入层各单元的输入Pk=(a1,a2,...,an)来修正连接权wij和阈值θj。
基坑降水工程的环境效应与评价方法
(10)随机选取下一个学习样本向量提供给网络,返回到步骤(3),直到m个训练样本训练完毕。
(11)重新从m个学习样本中随机选取一组输入和目标样本,返回步骤(3),直到网路全局误差E小于预先设定的一个极小值,即网络收敛。如果学习次数大于预先设定的值,网络就无法收敛。
(12)学习结束。
可以看出,在以上学习步骤中,(8)、(9)步为网络误差的“逆传播过程”,(10)、(11)步则用于完成训练和收敛过程。
通常,经过训练的网络还应该进行性能测试。测试的方法就是选择测试样本向量,将其提供给网络,检验网络对其分类的正确性。测试样本向量中应该包含今后网络应用过程中可能遇到的主要典型模式(宋大奇,2006)。这些样本可以直接测取得到,也可以通过仿真得到,在样本数据较少或者较难得到时,也可以通过对学习样本加上适当的噪声或按照一定规则插值得到。为了更好地验证网络的泛化能力,一个良好的测试样本集中不应该包含和学习样本完全相同的模式(董军,2007)。
㈦ 个人做量化交易需要注意些什么
一说到量化投资,一下子蹦出来一堆厉害的语汇,例如:FPGA,微波加热,高频率,纳秒等级延迟时间这些。这种全是高频交易中的语汇,高频交易的确是基金管理公司做起来较为适合,平常人搞起来门槛较为高。
模拟交易最后实际效果一般在于你的程序流程是不是灵便,是不是优良的风险性和资金分配优化算法。
总结:对于说本人做量化投资是不是可靠,上边的步骤早已表明了实际可策划方案,可靠性显而易见。对于能否赚到钱,就看本人的修为了更好地。
㈧ 神经网络的发展趋势如何
神经网络的云集成模式还不是很成熟,应该有发展潜力,但神经网络有自己的硬伤,不知道能够达到怎样的效果,所以决策支持系统中并不是很热门,但是神经网络无视过程的优点也是无可替代的,云网络如果能够对神经网络提供一个互补的辅助决策以控制误差的话,也许就能使神经网络成熟起来
1 人工神经网络产生的背景
自古以来,关于人类智能本源的奥秘,一直吸引着无数哲学家和自然科学家的研究热情。生物学家、神经学家经过长期不懈的努力,通过对人脑的观察和认识,认为人脑的智能活动离不开脑的物质基础,包括它的实体结构和其中所发生的各种生物、化学、电学作用,并因此建立了神经元网络理论和神经系统结构理论,而神经元理论又是此后神经传导理论和大脑功能学说的基础。在这些理论基础之上,科学家们认为,可以从仿制人脑神经系统的结构和功能出发,研究人类智能活动和认识现象。另一方面,19世纪之前,无论是以欧氏几何和微积分为代表的经典数学,还是以牛顿力学为代表的经典物理学,从总体上说,这些经典科学都是线性科学。然而,客观世界是如此的纷繁复杂,非线性情况随处可见,人脑神经系统更是如此。复杂性和非线性是连接在一起的,因此,对非线性科学的研究也是我们认识复杂系统的关键。为了更好地认识客观世界,我们必须对非线性科学进行研究。人工神经网络作为一种非线性的、与大脑智能相似的网络模型,就这样应运而生了。所以,人工神经网络的创立不是偶然的,而是20世纪初科学技术充分发展的产物。
2 人工神经网络的发展
人工神经网络的研究始于40年代初。半个世纪以来,经历了兴起、高潮与萧条、高潮及稳步发展的远为曲折的道路。
1943年,心理学家W.S.Mcculloch和数理逻辑学家W.Pitts 提出了M—P模型,这是第一个用数理语言描述脑的信息处理过程的模型, 虽然神经元的功能比较弱,但它为以后的研究工作提供了依据。1949年,心理学家D.O.Hebb提出突触联系可变的假设,根据这一假设提出的学习规律为神经网络的学习算法奠定了基础。 1957 年, 计算机科学家Rosenblatt提出了著名的感知机模型,它的模型包含了现代计算机的一些原理,是第一个完整的人工神经网络,第一次把神经网络研究付诸工程实现。由于可应用于模式识别,联想记忆等方面,当时有上百家实验室投入此项研究,美国军方甚至认为神经网络工程应当比“原子弹工程”更重要而给予巨额资助,并在声纳信号识别等领域取得一定成绩。1960年,B.Windrow和E.Hoff提出了自适应线性单元, 它可用于自适应滤波、预测和模式识别。至此,人工神经网络的研究工作进入了第一个高潮。
1969年,美国著名人工智能学者M.Minsky和S.Papert编写了影响很大的Perceptron一书,从理论上证明单层感知机的能力有限,诸如不能解决异或问题,而且他们推测多层网络的感知机能力也不过如此,他们的分析恰似一瓢冷水,很多学者感到前途渺茫而纷纷改行,原先参与研究的实验室纷纷退出,在这之后近10年,神经网络研究进入了一个缓慢发展的萧条期。这期间,芬兰学者T.Kohonen 提出了自组织映射理论,反映了大脑神经细胞的自组织特性、记忆方式以及神经细胞兴奋刺激的规律;美国学者S.A.Grossberg的自适应共振理论(ART );日本学者K.Fukushima提出了认知机模型;ShunIchimari则致力于神经网络有关数学理论的研究等,这些研究成果对以后的神经网络的发展产生了重要影响。
美国生物物理学家J.J.Hopfield于1982年、1984年在美国科学院院刊发表的两篇文章,有力地推动了神经网络的研究,引起了研究神经网络的又一次热潮。 1982 年, 他提出了一个新的神经网络模型——hopfield网络模型。他在这种网络模型的研究中,首次引入了网络能量函数的概念,并给出了网络稳定性的判定依据。1984年,他又提出了网络模型实现的电子电路,为神经网络的工程实现指明了方向,他的研究成果开拓了神经网络用于联想记忆的优化计算的新途径,并为神经计算机研究奠定了基础。1984年Hinton等人将模拟退火算法引入到神经网络中,提出了Boltzmann机网络模型,BM 网络算法为神经网络优化计算提供了一个有效的方法。1986年,D.E.Rumelhart和J.LMcclelland提出了误差反向传播算法,成为至今为止影响很大的一种网络学习方法。1987年美国神经计算机专家R.Hecht—Nielsen提出了对向传播神经网络,该网络具有分类灵活,算法简练的优点,可用于模式分类、函数逼近、统计分析和数据压缩等领域。1988年L.Ochua 等人提出了细胞神经网络模型,它在视觉初级加工上得到了广泛应用。
为适应人工神经网络的发展,1987年成立了国际神经网络学会,并决定定期召开国际神经网络学术会议。1988年1月Neural Network 创刊。1990年3月IEEE Transaction on Neural Network问世。 我国于1990年12月在北京召开了首届神经网络学术大会,并决定以后每年召开一次。1991 年在南京成立了中国神经网络学会。 IEEE 与INNS 联合召开的IJCNN92已在北京召开。 这些为神经网络的研究和发展起了推波助澜的作用,人工神经网络步入了稳步发展的时期。
90年代初,诺贝尔奖获得者Edelman提出了Darwinism模型,建立了神经网络系统理论。同年,Aihara等在前人推导和实验的基础上,给出了一个混沌神经元模型,该模型已成为一种经典的混沌神经网络模型,该模型可用于联想记忆。 Wunsch 在90OSA 年会上提出了一种AnnualMeeting,用光电执行ART,学习过程有自适应滤波和推理功能,具有快速和稳定的学习特点。1991年,Hertz探讨了神经计算理论, 对神经网络的计算复杂性分析具有重要意义;Inoue 等提出用耦合的混沌振荡子作为某个神经元,构造混沌神经网络模型,为它的广泛应用前景指明了道路。1992年,Holland用模拟生物进化的方式提出了遗传算法, 用来求解复杂优化问题。1993年方建安等采用遗传算法学习,研究神经网络控制器获得了一些结果。1994年Angeline等在前人进化策略理论的基础上,提出一种进化算法来建立反馈神经网络,成功地应用到模式识别,自动控制等方面;廖晓昕对细胞神经网络建立了新的数学理论和方法,得到了一系列结果。HayashlY根据动物大脑中出现的振荡现象,提出了振荡神经网络。1995年Mitra把人工神经网络与模糊逻辑理论、 生物细胞学说以及概率论相结合提出了模糊神经网络,使得神经网络的研究取得了突破性进展。Jenkins等人研究光学神经网络, 建立了光学二维并行互连与电子学混合的光学神经网络,它能避免网络陷入局部最小值,并最后可达到或接近最理想的解;SoleRV等提出流体神经网络,用来研究昆虫社会,机器人集体免疫系统,启发人们用混沌理论分析社会大系统。1996年,ShuaiJW’等模拟人脑的自发展行为, 在讨论混沌神经网络的基础上提出了自发展神经网络。1997、1998年董聪等创立和完善了广义遗传算法,解决了多层前向网络的最简拓朴构造问题和全局最优逼近问题。
随着理论工作的发展,神经网络的应用研究也取得了突破性进展,涉及面非常广泛,就应用的技术领域而言有计算机视觉,语言的识别、理解与合成,优化计算,智能控制及复杂系统分析,模式识别,神经计算机研制,知识推理专家系统与人工智能。涉及的学科有神经生理学、认识科学、数理科学、心理学、信息科学、计算机科学、微电子学、光学、动力学、生物电子学等。美国、日本等国在神经网络计算机软硬件实现的开发方面也取得了显著的成绩,并逐步形成产品。在美国,神经计算机产业已获得军方的强有力支持,国防部高级研究计划局认为“神经网络是解决机器智能的唯一希望”,仅一项8 年神经计算机计划就投资4亿美元。在欧洲共同体的ESPRIT计划中, 就有一项特别项目:“神经网络在欧洲工业中的应用”,单是生产神经网络专用芯片这一项就投资2200万美元。据美国资料声称,日本在神经网络研究上的投资大约是美国的4倍。我国也不甘落后,自从1990 年批准了南开大学的光学神经计算机等3项课题以来, 国家自然科学基金与国防预研基金也都为神经网络的研究提供资助。另外,许多国际著名公司也纷纷卷入对神经网络的研究,如Intel、IBM、Siemens、HNC。神经计算机产品开始走向商用阶段,被国防、企业和科研部门选用。在举世瞩目的海湾战争中,美国空军采用了神经网络来进行决策与控制。在这种刺激和需求下,人工神经网络定会取得新的突破,迎来又一个高潮。自1958年第一个神经网络诞生以来,其理论与应用成果不胜枚举。人工神经网络是一个快速发展着的一门新兴学科,新的模型、新的理论、新的应用成果正在层出不穷地涌现出来。
3 人工神经网络的发展前景
针对神经网络存在的问题和社会需求,今后发展的主要方向可分为理论研究和应用研究两个方面。
(1)利用神经生理与认识科学研究大脑思维及智能的机理、 计算理论,带着问题研究理论。
人工神经网络提供了一种揭示智能和了解人脑工作方式的合理途径,但是由于人类起初对神经系统了解非常有限,对于自身脑结构及其活动机理的认识还十分肤浅,并且带有某种“先验”。例如, Boltzmann机引入随机扰动来避免局部极小,有其卓越之处,然而缺乏必要的脑生理学基础,毫无疑问,人工神经网络的完善与发展要结合神经科学的研究。而且,神经科学,心理学和认识科学等方面提出的一些重大问题,是向神经网络理论研究提出的新挑战,这些问题的解决有助于完善和发展神经网络理论。因此利用神经生理和认识科学研究大脑思维及智能的机理,如有新的突破,将会改变智能和机器关系的认识。
利用神经科学基础理论的研究成果,用数理方法探索智能水平更高的人工神经网络模型,深入研究网络的算法和性能,如神经计算、进化计算、稳定性、收敛性、计算复杂性、容错性、鲁棒性等,开发新的网络数理理论。由于神经网络的非线性,因此非线性问题的研究是神经网络理论发展的一个最大动力。特别是人们发现,脑中存在着混沌现象以来,用混沌动力学启发神经网络的研究或用神经网络产生混沌成为摆在人们面前的一个新课题,因为从生理本质角度出发是研究神经网络的根本手段。
(2)神经网络软件模拟, 硬件实现的研究以及神经网络在各个科学技术领域应用的研究。
由于人工神经网络可以用传统计算机模拟,也可以用集成电路芯片组成神经计算机,甚至还可以用光学的、生物芯片的方式实现,因此研制纯软件模拟,虚拟模拟和全硬件实现的电子神经网络计算机潜力巨大。如何使神经网络计算机与传统的计算机和人工智能技术相结合也是前沿课题;如何使神经网络计算机的功能向智能化发展,研制与人脑功能相似的智能计算机,如光学神经计算机,分子神经计算机,将具有十分诱人的前景。
4 哲理
(1)人工神经网络打开了认识论的新领域
认识与脑的问题,长期以来一直受到人们的关注,因为它不仅是有关人的心理、意识的心理学问题,也是有关人的思维活动机制的脑科学与思维科学问题,而且直接关系到对物质与意识的哲学基本问题的回答。人工神经网络的发展使我们能够更进一步地既唯物又辩证地理解认识与脑的关系,打开认识论的新领域。人脑是一个复杂的并行系统,它具有“认知、意识、情感”等高级脑功能,用人工进行模拟,有利于加深对思维及智能的认识,已对认知和智力的本质的研究产生了极大的推动作用。在研究大脑的整体功能和复杂性方面,人工神经网络给人们带来了新的启迪。由于人脑中存在混沌现象,混沌可用来理解脑中某些不规则的活动,从而混沌动力学模型能用作人对外部世界建模的工具,可用来描述人脑的信息处理过程。混沌和智能是有关的,神经网络中引入混沌学思想有助于提示人类形象思维等方面的奥秘。人工神经网络之所以再度兴起,关键在于它反映了事物的非线性,抓住了客观世界的本质,而且它在一定程度上正面回答了智能系统如何从环境中自主学习这一最关键的问题,从认知的角度讲,所谓学习,就是对未知现象或规律的发现和归纳。由于神经网络具有高度的并行性,高度的非线性全局作用,良好的容错性与联想记忆功能以及十分强的自适应、自学习功能,而使得它成为揭示智能和了解人脑工作方式的合理途径。但是,由于认知问题的复杂性,目前,我们对于脑神经网的运行和神经细胞的内部处理机制,如信息在人脑是如何传输、存贮、加工的?记忆、联想、判断是如何形成的?大脑是否存在一个操作系统?还没有太多的认识,因此要制造人工神经网络来模仿人脑各方面的功能,还有待于人们对大脑信息处理机理认识的深化。
(2)人工神经网络发展的推动力来源于实践、 理论和问题的相互作用
随着人们社会实践范围的不断扩大,社会实践层次的不断深入,人们所接触到的自然现象也越来越丰富多彩、纷繁复杂,这就促使人们用不同的原因加以解释不同种类的自然现象,当不同种类的自然现象可以用同样的原因加以解释,这样就出现了不同学科的相互交叉、综合,人工神经网络就这样产生了。在开始阶段,由于这些理论化的网络模型比较简单,还存在许多问题,而且这些模型几乎没有得到实践的检验,因而神经网络的发展比较缓慢。随着理论研究的深入,问题逐渐地解决特别是工程上得到实现以后,如声纳识别成功,才迎来了神经网络的第一个发展高潮。可Minisky认为感知器不能解决异或问题, 多层感知器也不过如此,神经网络的研究进入了低谷,这主要是因为非线性问题没得到解决。随着理论的不断丰富,实践的不断深入, 现在已证明Minisky的悲观论调是错误的。今天,高度发达的科学技术逐渐揭示了非线性问题是客观世界的本质。问题、理论、实践的相互作用又迎来了人工神经网络的第二次高潮。目前人工神经网络的问题是智能水平不高,还有其它理论和实现方面的问题,这就迫使人们不断地进行理论研究,不断实践,促使神经网络不断向前发展。总之,先前的原因遇到了解释不同的新现象,促使人们提出更加普遍和精确的原因来解释。理论是基础,实践是动力,但单纯的理论和实践的作用还不能推动人工神经网络的发展,还必须有问题提出,才能吸引科学家进入研究的特定范围,引导科学家从事相关研究,从而逼近科学发现,而后实践又提出新问题,新问题又引发新的思考,促使科学家不断思考,不断完善理论。人工神经网络的发展无不体现着问题、理论和实践的辩证统一关系。
(3 )人工神经网络发展的另一推动力来源于相关学科的贡献及不同学科专家的竞争与协同
人工神经网络本身就是一门边缘学科,它的发展有更广阔的科学背景,亦即是众多科研成果的综合产物,控制论创始人Wiener在其巨著《控制论》中就进行了人脑神经元的研究;计算机科学家Turing就提出过B网络的设想;Prigogine提出非平衡系统的自组织理论,获得诺贝尔奖;Haken研究大量元件联合行动而产生宏观效果, 非线性系统“混沌”态的提出及其研究等,都是研究如何通过元件间的相互作用建立复杂系统,类似于生物系统的自组织行为。脑科学与神经科学的进展迅速反映到人工神经网络的研究中,例如生物神经网络理论,视觉中发现的侧抑制原理,感受野概念等,为神经网络的发展起了重要的推动作用。从已提出的上百种人工神经网络模型中,涉及学科之多,令人目不暇接,其应用领域之广,令人叹为观止。不同学科专家为了在这一领域取得领先水平,存在着不同程度的竞争,所有这些有力地推动了人工神经网络的发展。人脑是一个功能十分强大、结构异常复杂的信息系统,随着信息论、控制论、生命科学,计算机科学的发展,人们越来越惊异于大脑的奇妙,至少到目前为止,人类大脑信号处理机制对人类自身来说,仍是一个黑盒子,要揭示人脑的奥秘需要神经学家、心理学家、计算机科学家、微电子学家、数学家等专家的共同努力,对人类智能行为不断深入研究,为人工神经网络发展提供丰富的理论源泉。另外,还要有哲学家的参与,通过哲学思想和自然科学多种学科的深层结合,逐步孕育出探索人类思维本质和规律的新方法,使思维科学从朦胧走向理性。而且,不同领域专家的竞争与协调同有利于问题清晰化和寻求最好的解决途径。纵观神经网络的发展历史,没有相关学科的贡献,不同学科专家的竞争与协同,神经网络就不会有今天。当然,人工神经网络在各个学科领域应用的研究反过来又推动其它学科的发展,推动自身的完善和发展。
㈨ 什么叫数据挖掘、神经网络
数据挖掘(Data Mining)是指通过大量数据集进行分类的自动化过程,以通过数据分析来识别趋势和模式,建立关系来解决业务问题。换句话说,数据挖掘是从大量的、不完全的、有噪声的、模糊的、随机的数据中提取隐含在其中的、人们事先不知道的、但又是潜在有用的信息和知识的过程。
原则上讲,数据挖掘可以应用于任何类型的信息存储库及瞬态数据(如数据流),如数据库、数据仓库、数据集市、事务数据库、空间数据库(如地图等)、工程设计数据(如建筑设计等)、多媒体数据(文本、图像、视频、音频)、网络、数据流、时间序列数据库等。也正因如此,数据挖掘存在以下特点:
(1)数据集大且不完整
数据挖掘所需要的数据集是很大的,只有数据集越大,得到的规律才能越贴近于正确的实际的规律,结果也才越准确。除此以外,数据往往都是不完整的。
(2)不准确性
数据挖掘存在不准确性,主要是由噪声数据造成的。比如在商业中用户可能会提供假数据;在工厂环境中,正常的数据往往会收到电磁或者是辐射干扰,而出现超出正常值的情况。这些不正常的绝对不可能出现的数据,就叫做噪声,它们会导致数据挖掘存在不准确性。
(3)模糊的和随机的
数据挖掘是模糊的和随机的。这里的模糊可以和不准确性相关联。由于数据不准确导致只能在大体上对数据进行一个整体的观察,或者由于涉及到隐私信息无法获知到具体的一些内容,这个时候如果想要做相关的分析操作,就只能在大体上做一些分析,无法精确进行判断。
而数据的随机性有两个解释,一个是获取的数据随机;我们无法得知用户填写的到底是什么内容。第二个是分析结果随机。数据交给机器进行判断和学习,那么一切的操作都属于是灰箱操作。
神经网络:
神经网络由于本身良好的鲁棒性、自组织自适应性、并行处理、分布存储和高度容错等特性非常适合解决数据挖掘的问题,因此近年来越来越受到人们的关注。
㈩ 人工智能:什么是人工神经网络
许多 人工智能 计算机系统的核心技术是人工神经网络(ANN),而这种网络的灵感来源于人类大脑中的生物结构。
通过使用连接的“神经元”结构,这些网络可以通过“学习”并在没有人类参与的情况下处理和评估某些数据。
这样的实际实例之一是使用人工神经网络(ANN)识别图像中的对象。在构建一个识别“猫“图像的一个系统中,将在包含标记为“猫”的图像的数据集上训练人工神经网络,该数据集可用作任何进行分析的参考点。正如人们可能学会根据尾巴或皮毛等独特特征来识别狗一样,人工神经网络(ANN)也可以通过将每个图像分解成不同的组成部分(如颜色和形状)进行识别。
实际上,神经网络提供了位于托管数据之上的排序和分类级别,可基于相似度来辅助数据的聚类和分组。可以使用人工神经网络(ANN)生成复杂的垃圾邮件过滤器,查找欺诈行为的算法以及可以精确了解情绪的客户关系工具。
人工神经网络如何工作
人工神经网络的灵感来自人脑的神经组织,使用类似于神经元的计算节点构造而成,这些节点沿着通道(如神经突触的工作方式)进行信息交互。这意味着一个计算节点的输出将影响另一个计算节点的处理。
神经网络标志着人工智能发展的巨大飞跃,在此之前,人工智能一直依赖于使用预定义的过程和定期的人工干预来产生所需的结果。人工神经网络可以使分析负载分布在多个互连层的网络中,每个互连层包含互连节点。在处理信息并对其进行场景处理之后,信息将传递到下一个节点,然后向下传递到各个层。这个想法是允许将其他场景信息接入网络,以通知每个阶段的处理。
单个“隐藏”层神经网络的基本结构
就像渔网的结构一样,神经网络的一个单层使用链将处理节点连接在一起。大量的连接使这些节点之间的通信得到增强,从而提高了准确性和数据处理吞吐量。
然后,人工神经网络将许多这样的层相互叠放以分析数据,从而创建从第一层到最后一层的输入和输出数据流。尽管其层数将根据人工神经网络的性质及其任务而变化,但其想法是将数据从一层传递到另一层,并随其添加附加的场景信息。
人脑是用3D矩阵连接起来的,而不是大量堆叠的图层。就像人类大脑一样,节点在接收到特定刺激时会在人工神经网络上“发射”信号,并将信号传递到另一个节点。但是,对于人工神经网络,输入信号定义为实数,输出为各种输入的总和。
这些输入的值取决于它们的权重,该权重用于增加或减少与正在执行的任务相对应的输入数据的重要性。其目标是采用任意数量的二进制数值输入并将其转换为单个二进制数值输出。
更复杂的神经网络提高了数据分析的复杂性
早期的神经网络模型使用浅层结构,其中只使用一个输入和输出层。而现代的系统由一个输入层和一个输出层组成,其中输入层首先将数据输入网络,多个“隐藏”层增加了数据分析的复杂性。
这就是“深度学习”一词的由来——“深度”部分专门指任何使用多个“隐藏”层的神经网络。
聚会的例子
为了说明人工神经网络在实际中是如何工作的,我们将其简化为一个实际示例。
想象一下你被邀请参加一个聚会,而你正在决定是否参加,这可能需要权衡利弊,并将各种因素纳入决策过程。在此示例中,只选择三个因素——“我的朋友会去吗?”、“聚会地点远吗?”、“天气会好吗?”
通过将这些考虑因素转换为二进制数值,可以使用人工神经网络对该过程进行建模。例如,我们可以为“天气”指定一个二进制数值,即‘1'代表晴天,‘0'代表恶劣天气。每个决定因素将重复相同的格式。
然而,仅仅赋值是不够的,因为这不能帮助你做出决定。为此需要定义一个阈值,即积极因素的数量超过消极因素的数量。根据二进制数值,合适的阈值可以是“2”。换句话说,在决定参加聚会之前,需要两个因素的阈值都是“1”,你才会决定去参加聚会。如果你的朋友要参加聚会(‘1'),并且天气很好(‘1'),那么这就表示你可以参加聚会。
如果天气不好(‘0'),并且聚会地点很远(‘0'),则达不到这一阈值,即使你的朋友参加(‘1'),你也不会参加聚会。
神经加权
诚然,这是神经网络基本原理的一个非常基本的例子,但希望它有助于突出二进制值和阈值的概念。然而,决策过程要比这个例子复杂得多,而且通常情况下,一个因素比另一个因素对决策过程的影响更大。
要创建这种变化,可以使用“神经加权”——-通过乘以因素的权重来确定因素的二进制值对其他因素的重要性。
尽管示例中的每个注意事项都可能使你难以决策,但你可能会更重视其中一个或两个因素。如果你不愿意在大雨中出行去聚会,那恶劣的天气将会超过其他两个考虑因素。在这一示例中,可以通过赋予更高的权重来更加重视天气因素的二进制值:
天气= w5
朋友= w2
距离= w2
如果假设阈值现在已设置为6,则恶劣的天气(值为0)将阻止其余输入达到所需的阈值,因此该节点将不会“触发”(这意味着你将决定不参加聚会)。
虽然这是一个简单的示例,但它提供了基于提供的权重做出决策的概述。如果要将其推断为图像识别系统,则是否参加聚会(输入)的各种考虑因素将是给定图像的折衷特征,即颜色、大小或形状。例如,对识别狗进行训练的系统可以对形状或颜色赋予更大的权重。
当神经网络处于训练状态时,权重和阈值将设置为随机值。然后,当训练数据通过网络传递时将不断进行调整,直到获得一致的输出为止。
神经网络的好处
神经网络可以有机地学习。也就是说,神经网络的输出结果并不受输入数据的完全限制。人工神经网络可以概括输入数据,使其在模式识别系统中具有价值。
他们还可以找到实现计算密集型答案的捷径。人工神经网络可以推断数据点之间的关系,而不是期望数据源中的记录是明确关联的。
它们也可以是容错的。当神经网络扩展到多个系统时,它们可以绕过无法通信的缺失节点。除了围绕网络中不再起作用的部分进行路由之外,人工神经网络还可以通过推理重新生成数据,并帮助确定不起作用的节点。这对于网络的自诊断和调试非常有用。
但是,深度神经网络提供的最大优势是能够处理和聚类非结构化数据,例如图片、音频文件、视频、文本、数字等数据。在分析层次结构中,每一层节点都在前一层的输出上进行训练,深层神经网络能够处理大量的这种非结构化数据,以便在人类处理分析之前找到相似之处。
神经网络的例子
神经网络应用还有许多示例,可以利用它从复杂或不精确数据中获得见解的能力。
图像识别人工神经网络可以解决诸如分析特定物体的照片等问题。这种算法可以用来区分狗和猫。更重要的是,神经网络已经被用于只使用细胞形状信息来诊断癌症。
近30年来,金融神经网络被用于汇率预测、股票表现和选择预测。神经网络也被用来确定贷款信用评分,学习正确识别良好的或糟糕的信用风险。而电信神经网络已被电信公司用于通过实时评估网络流量来优化路由和服务质量。