当前位置:首页 » 行情解析 » python回归分析股票
扩展阅读
广生堂股票代码多少 2025-01-31 16:26:56
股票账户网上怎么转户 2025-01-31 15:44:28

python回归分析股票

发布时间: 2022-09-15 01:50:29

⑴ 如何用python做回归 判断这个股票和股指间的关系

一个大项目的完成不是楼主以为的一天就能完成,通常会延续一年月乃至数年,看当时的风有多大了。所以去深究一天的盘口意义不是特别大。
大作手如果对大的基本面判断失误,筹码、发动时机控制不好,锁筹小伙伴背后捅刀子,走水出现大的老鼠仓,资金链出问题,碰到其他有钱任性的机构,老婆偷人枪杀儿子导致脑子短路等等鸡飞狗跳的事情,项目做折掉,从庄家变股东的可能性也是非常大的,以亿计的现金灰飞烟灭不过分分钟的事情。
===============================================================
A股的死穴——要赚钱必须涨,做多是唯一出路。
做庄的基本原理:比如5元的标的,在底部拿够筹码,配合风信,能做多高做多高,比如做到50块,然后就一路压低卖下来,卖到15块,乃至10块。总有人觉得够
便宜了会要的。
===============================================================
步骤1:做底仓,一般是先买到流通盘的30%。
具体做法就是在熊市末期,对着往上敲,然后亏本往下砸。卖1个,跟着会掉下来2-3个,接住。做底吸筹这个时间段有时会很长,视实际筹码的收集情况和大盘走势而定。
看下图成交量,主力第一注就是下在中间偏左点的位置,进而不断往震荡吸筹。那么大的成交量,你总不会觉得是公众交易者干出来的吧。
tip:标准底部的特征就是脉冲式放量缩量,公众交易者不参与任何震荡,切记。底部持续时间越长,筹码控制越集中,以后上涨的高度越高,即所谓的横有多长竖有多高。同时尽量挑选底部形态比较标准的标的,一年时间跨度以上的大圆弧底、复合头肩、矩形底最好。越漂亮的走势图形控盘度越高,筹码散乱的状态下往往代表着多方博弈。

⑵ 如何用Python进行线性回归以及误差分析

如何用Python进行线性回归以及误差分析
如果你想要重命名,只需要按下:
CTRL-b
状态条将会改变,这时你将可以重命名当前的窗口
一旦在一个会话中创建多个窗口,我们需要在这些窗口间移动的办法。窗口像数组一样组织在一起,从0开始用数字标记每个窗口,想要快速跳转到其余窗口:
CTRL-b 《窗口号》
如果我们给窗口起了名字,我们可以使用下面的命令找到它们:
CTRL-b f
也可以列出所有窗口:
CTRL-b w

⑶ Python 关于两个股票线性回归的 求教

你好: 上面的程序,请看如下代码: # -*- coding: cp936 -*-end=input("是否结束(y/n):")while end=="n": print "Number of coordinates:2" xx=input("x's:") yy=input("y's:") a=float(list(xx)[0]) b=float(list(xx)[1]) c=float(list(yy...

⑷ 如何用python炒股

你就是想找个软件或者券商的接口去上传交易指令,你前期的数据抓取和分析可能python都写好了,所以差这交易指令接口最后一步。对于股票的散户,正规的法子是华宝,国信,兴业这样愿意给接口的券商,但貌似开户费很高才给这权利,而且只有lts,ctp这样的c++接口,没python版就需要你自己封装。还有的法是wind这样的软件也有直接的接口,支持部分券商,但也贵,几万一年是要的,第三种就是走野路子,鼠标键盘模拟法,很复杂的,就是模拟键盘鼠标去操作一些软件,比如券商版交易软件和大智慧之类的。还有一种更野的方法,就是找到这些软件的关于交易指令的底层代码并更改,我网络看到的,不知道是不是真的可行。。散户就这样,没资金就得靠技术,不过我觉得T+1的规则下,预测准确率的重要性高于交易的及时性,花功夫做数据分析就好,交易就人工完成吧

⑸ 如何用Python进行线性回归以及误差分析

数据挖掘中的预测问题通常分为2类:回归与分类。

简单的说回归就是预测数值,而分类是给数据打上标签归类。

本文讲述如何用Python进行基本的数据拟合,以及如何对拟合结果的误差进行分析。

本例中使用一个2次函数加上随机的扰动来生成500个点,然后尝试用1、2、100次方的多项式对该数据进行拟合。

拟合的目的是使得根据训练数据能够拟合出一个多项式函数,这个函数能够很好的拟合现有数据,并且能对未知的数据进行预测。

代码如下:

  • importmatplotlib.pyplot as plt

  • importnumpy as np

  • importscipy as sp

  • fromscipy.statsimportnorm

  • fromsklearn.pipelineimportPipeline

  • fromsklearn.linear_modelimportLinearRegression

  • fromsklearn.

  • fromsklearnimportlinear_model

  • ''''' 数据生成 '''

  • x = np.arange(0,1,0.002)

  • y = norm.rvs(0, size=500, scale=0.1)

  • y = y + x**2

  • ''''' 均方误差根 '''

  • defrmse(y_test, y):

  • returnsp.sqrt(sp.mean((y_test - y) **2))

  • ''''' 与均值相比的优秀程度,介于[0~1]。0表示不如均值。1表示完美预测.这个版本的实现是参考scikit-learn官网文档 '''

  • defR2(y_test, y_true):

  • return1- ((y_test - y_true)**2).sum() / ((y_true - y_true.mean())**2).sum()

  • ''''' 这是Conway&White《机器学习使用案例解析》里的版本 '''

  • defR22(y_test, y_true):

  • y_mean = np.array(y_true)

  • y_mean[:] = y_mean.mean()

  • return1- rmse(y_test, y_true) / rmse(y_mean, y_true)

  • plt.scatter(x, y, s=5)

  • degree = [1,2,100]

  • y_test = []

  • y_test = np.array(y_test)

  • fordindegree:

  • clf = Pipeline([('poly', PolynomialFeatures(degree=d)),

  • ('linear', LinearRegression(fit_intercept=False))])

  • clf.fit(x[:, np.newaxis], y)

  • y_test = clf.predict(x[:, np.newaxis])

  • print(clf.named_steps['linear'].coef_)

  • print('rmse=%.2f, R2=%.2f, R22=%.2f, clf.score=%.2f'%

  • (rmse(y_test, y),

  • R2(y_test, y),

  • R22(y_test, y),

  • clf.score(x[:, np.newaxis], y)))

  • plt.plot(x, y_test, linewidth=2)

  • plt.grid()

  • plt.legend(['1','2','100'], loc='upper left')

  • plt.show()

  • 该程序运行的显示结果如下:

    [ 0. 0.75873781]

    rmse=0.15, R2=0.78, R22=0.53, clf.score=0.78

    [ 0. 0.35936882 0.52392172]

    rmse=0.11, R2=0.87, R22=0.64, clf.score=0.87

    [ 0.00000000e+00 2.63903249e-01 3.14973328e-01 2.43389461e-01

    1.67075328e-01 1.10674280e-01 7.30672237e-02 4.88605804e-02

    ......

    3.70018540e-11 2.93631291e-11 2.32992690e-11 1.84860002e-11

    1.46657377e-11]

    rmse=0.10, R2=0.90, R22=0.68, clf.score=0.90

⑹ 如何用python 取所有股票一段时间历史数据

各种股票软件,例如通达信、同花顺、大智慧,都可以实时查看股票价格和走势,做一些简单的选股和定量分析,但是如果你想做更复杂的分析,例如回归分析、关联分析等就有点捉襟见肘,所以最好能够获取股票历史及实时数据并存储到数据库,然后再通过其他工具,例如SPSS、SAS、EXCEL或者其他高级编程语言连接数据库获取股票数据进行定量分析,这样就能实现更多目的了。

⑺ python对股票分析有什么作用

你好,Python对于股票分析来说,用处是很大的
Python,用数据软件分析可以做股票的量化程序,因为股票量化是未来的一种趋势,能够解决人为心理波动和冲动下单等不良行为,所以学好python量化的话,那么对股票来说有很大很大帮助

⑻ Python 关于两个股票线性回归的 求教

你好:上面的程序,请看如下代码:#-*-coding:cp936-*-end=input("是否结束(y/n):")whileend=="n":print"Numberofcoordinates:2"xx=input("x's:")yy=input("y's:")a=float(list(xx)[0])b=float(list(xx)[1])c=float(list(yy

⑼ 学python能做什么

Python第三方模块众多,下面我介绍一些比较实用而又有趣的模块,主要分为爬虫、数据处理、可视化、机器学习、神经网络、股票财经、游戏这7个方面,主要内容如下:

1.爬虫:
相信大部分人都用Python爬过数据,目前来说,比较流行的框架是scrapy,对爬取数据来说,简单方便了不少,只需要自己添加少量的代码,框架便可启动开始爬取,当然,还有简单地爬虫包,像requests+BeautifulSoup,对于爬取简单网页来说,也足够了:

如果你想要学好Python最好加入一个好的学习环境,可以来这个Q群,首先是629,中间是440,最后是234,这样大家学习的话就比较方便,还能够共同交流和分享资料

2.数据处理:
numpy,scipy,pandas这些包对于处理数据来说非常方便,线性代数、科学计算等,利用numpy处理起来非常方便,pandas提供的DataFrame类可以方便的处理各种类型的文件,像excel,csv等,是分析数据的利器:

3.可视化:
这里的包其实也挺多的,除了我们常用的matplotlib外,还有seaborn,pyecharts等,可以绘制出各种各样类型的图形,除了常见的线图、饼图和柱状图外,还可以绘制出地图、词云图、地理坐标系图等,美观大方,所需的代码量还少,更容易上手:

4.机器学习:
说起python机器学习,大部分人都应该scikit-learn这个包,常见的机器学习算法,像回归、分类、聚类、降维、模型选择等,这里都有现成的代码可供利用,对于这机器学习方面感兴趣的人来说,这是一个入门机器学习的好包:

5.神经网络:
说起神经网络,大部分人都应该会想起深度学习,对应的就会想到谷歌目前非常流行的深度学习框架—tensorflow,tesndorflow可被用于语音识别和图像识别等众多领域,其发展前景光明,对于这方面感兴趣的科研人员来说,是一个很不错的工具,当然,还有基于tensorflow的theano,keras等,都是学习神经网络的不错选择:

6.股票财经:
对于股票和财经比较感兴趣的朋友来说,python也提供了现成的库来获取和分析股票财经数据—tushare,tushare是一个免费、开源的python财经数据接口包,可以快速的获取到国内大部分股票数据,对于金融分析人员来说,可以说是一个利器,降低了许多任务量:

7.游戏:
Python专门为游戏开发提供了一个平台—Pygame,对于想快速开发小型游戏的用户来说,是一个很不错的选择,简单易学、容易上手,脱离了低级语言的束缚,使用起来也挺方便的:

⑽ 如何利用Python预测股票价格

预测股票价格没有意义。
单支股票价格,多股组合,大盘这些都可以使用神经网络来学习,02年就做过了,涨跌预测平均能达到54%到57%的准确率,但是只能定性,无法定量,因此,在扣除印花税之后无利可图。

纯粹使用股票交易数据来预测并保证总体获利不是程序能办到的,人也办不到。
目前世界上最先进的炒股机器也只能利用网络时差那微不可计的零点几秒在欧洲与美国证券间倒来倒去,那套系统研发费用数千万,硬件(主要是独立光缆)费用以亿计。