当前位置:首页 » 行情解析 » 股票分析大数据spark
扩展阅读
华天科技今日股票 2025-02-06 12:26:12
中天盛祥的股票代码是 2025-02-06 10:08:02

股票分析大数据spark

发布时间: 2022-08-29 17:08:13

A. 大数据时代,为什么使用Spark框架

首先,Hadoop和Apache Spark两者都是大数据框架,但是各自存在的目的不尽相同。Hadoop实质上更多是一个分布式数据基础设施:
它将巨大的数据集分派到一个由普通计算机组成的集群中的多个节点进行存储,意味着您不需要购买和维护昂贵的服务器硬件。
同时,Hadoop还会索引和跟踪这些数据,让大数据处理和分析效率达到前所未有的高度。Spark,则是那么一个专门用来对那些分布式存储的大数据进行处理的工具,它并不会进行分布式数据的存储。
两者可合可分
Hadoop除了提供为大家所共识的HDFS分布式数据存储功能之外,还提供了叫做MapRece的数据处理功能。所以这里我们完全可以抛开Spark,使用Hadoop自身的MapRece来完成数据的处理。
相反,Spark也不是非要依附在Hadoop身上才能生存。但如上所述,毕竟它没有提供文件管理系统,所以,它必须和其他的分布式文件系统进行集成才能运作。这里我们可以选择Hadoop的HDFS,也可以选择其他的基于云的数据系统平台。但Spark默认来说还是被用在Hadoop上面的,毕竟,大家都认为它们的结合是最好的。

B. 《Spark大数据分析实战》pdf下载在线阅读全文,求百度网盘云资源

《Spark大数据分析实战》网络网盘pdf最新全集下载:
链接: https://pan..com/s/1JDqefPZ3_TjMKTxJ0MnD5g

?pwd=uj82 提取码: uj82
简介:这是一本根据应用场景讲解如何通过Spark进行大数据分析与应用构建的著作,以实战为导向。作者结合典型应用场景,抽象出通用与简化后的模型,以便于读者能举一反三,直接应用。

本书首先从技术层面讲解了Spark的机制、生态系统与开发相关的内容;然后从应用角度讲解了日志分析、推荐系统、情感分析、协同过滤、搜索引擎、社交网络分析、新闻数据分析等多个常见的大数据场景下的数据分析。在每个场景中,首先是对场景进行抽象与概括,然后将Spark融入其中构建数据分析算法与应用,最后结合其他开源系统或工具构建更为丰富的数据分析流水线。

C. 大数据处理为何选择spark

大数据处理为何选择Spark,而不是Hadoop?

一、基础知识

1、Spark

Spark是一个用来实现快速而通用的集群计算的平台。

在速度方面,Spark扩展了广泛使用的MapRece计算模型,而且高效地支持更多计算模式,包括交互式查询和流处理。

Spark项目包含多个紧密集成的组件。Spark的核心是一个对由很多计算任务组成的、运行在多个工作机器或者是一个计算集群上的应用进行调度、分发以及监控的计算引擎。

2、Hadoop

Hadoop是一个由Apache基金会所开发的分布式系统基础架构。

用户可以在不了解分布式底层细节的情况下,开发分布式程序。充分利用集群的威力进行高速运算和存储。

Hadoop的框架最核心的设计就是:HDFS和MapRece。HDFS为海量的数据提供了存储,则MapRece为海量的数据提供了计算。

很多初学者,对大数据的概念都是模糊不清的,大数据是什么,能做什么,学的时候,该按照什么线路去学习,学完往哪方面发展,想深入了解,想学习的同学欢迎加入大数据学习扣扣群:740041381,有大量干货(零基础以及进阶的经典实战)分享给大家,并且有清华大学毕业的资深大数据讲师给大家免费授课,给大家分享目前国内最完整的大数据高端实战实用学习流程体系。

二、大数据处理选择

Spark和Hadoop都可以进行大数据处理,那如何选择处理平台呢?

1.处理速度和性能

Spark扩展了广泛使用的MapRece计算模型,支持循环数据流和内存计算。

Hadoop进行计算时,需要从磁盘读或者写数据,同时整个计算模型需要网络传输,导致MapRece具有高延迟的弱点。

据统计,基于Spark内存的计算速度比Hadoop MapRece快100倍以上,基于磁盘的计算速度也要快10倍以上。

2.开发难易度

Spark提供多语言(包括Scala、Java、Python)API,能够快速实现应用,相比MapRece更简洁的代码,安装部署也无需复杂配置。使用API可以轻松地构建分布式应用,同时也可以使用Scala和Python脚本进行交互式编程。

D. 格力电器大数据分析股票

格力电器大家都不陌生,非常多朋友都入手了格力电器这只股。在家电行业,格力身为领军者,也是得到很多人的关注,下面学姐就帮大家好好分析分析格力电器。


在说格力电器前,大家可以参考一下学姐准备的这份家电行业龙头股名单,快点来看一看吧:宝藏资料:家电行业龙头股一览表


一、从公司角度来看


公司介绍:珠海格力电器股份有限公司包含生产销售空调器、自营空调器出口业务及其相关零配件的进出口业务这些主营业务。空调、生活电器、智能装备属于公司主要产品。据《暖通空调资讯》发布的数据显示,2021年上半年,格力中央空调凭借16.2%的市场份额排名榜首,在行业中起领跑作用;从《产业在线》得出的结论为,2021年上半年格力家用空调内销占比33.89%,在家电行业排第一。


依据简介不难看出格力电器实力非常雄厚,接下来我们以特色之处为切入点看看格力电器值不值得投资。


亮点一:员工持股方案落地,利益绑定长期稳增长可期


格力电器在2021年6月21日公布第一期员工持股计划草案,员工持股计划资金规模低于30亿元,股票是来自公司回购账户中的已回购股票,购买价格为 27.68元/股,为回购均价的50%,股票规模不超越1.08 亿股,占比就是总股本1.8%,拟参与员工总数不超过12000人,达到了总员工数的14%,将董明珠从能够认购上限3000万股中剔除后,人均持股0.65万股。员工持有股票的策略使得核心员工和骨干的个人利益与上公司业绩的高度聚集,很有希望能充分激发核心人员工作热情,未来公司业绩稳增长有可能实现。


亮点二:公司产品品类逐渐丰富,综合竞争力增强。


就从目前情况来看,公司已从单一品类发展到当前涵盖消费品和工业品两大领域多品类产品,其中,空调业务发展已从家用空调拓展到商用空调以及特殊工况空调,后续将重点向冷藏冷运、军工国防、医疗健康等领域继续拓展。


篇幅有一定限制,格力电器的深度报告与风险提示的其他内容,已经包含在了在这篇研报中,想看的点击一下就可以:【深度研报】格力电器点评,建议收藏!


二、从行业角度看


2018 年以来,白电市场经过电商下沉的助推,冰箱、洗衣机这两个产品已经基本能做到每家每户都能具备了,我们再看看空调,更是早就进入"一户多机"的时代了,未来升级换代将成为主要需求。在这样一个低基数的背景下,更新换代需求旺盛,各地方政府可能会加大补贴力度,促使白色家电在市场中的购买率逐渐升高。当疫情的冲击和考验过去之后,龙头企业凭借其在产业链布局、专利规模、科研投入和人才培养制度等领域上的的先进之处,用来创造"爆品"的机遇增大,白电市场的整体集中度会更进一步,格力电器作为白色家电行业的龙头企业有望从中受益。


三、总结


整体来说,格力电器实力没得说,市场占有率较高,通过改革,经营环境明显的变好了不少,产品日渐丰富,公司发展前景真的蛮优秀的。文章相对来讲是有滞后性的,要是想要更加清楚格力电器的未来行情,有需要的朋友们请直接点击下面的链接,有专业的投顾教你买股,看下格力电器现在行情是否是是时候买入或卖出:免费】测一测格力电器还有机会吗?



应答时间:2021-09-07,最新业务变化以文中链接内展示的数据为准,请点击查看

E. 如何学习Spark大数据

大数据技术,只有相互分享才能彼此共同进步,为什么我们的程序员经常活跃在各大博客和技术论坛?其主要原因是:程序员们并不拒绝分享,甚至是乐于去贡献代码。身为一个程序员,特别值得他们骄傲的事情就是自己写的代码被别人用到而带来的成就感。
今天,为我们分享了当今火爆的大数据技术,讲解了spark技术的核心,我们可以不从事数据分析行业,但国家的一些技术还是要了解的。
Spark核心概念Resilient Distributed Dataset (RDD)弹性分布数据集
RDD是Spark的基本抽象,是对分布式内存的抽象使用,实现了以操作本地集合的方式来操作分布式数据集的抽象实现。RDD是Spark特别核心的东西,它表示已被分区,不可变的并能够被并行操作的数据集合,不同的数据集格式对应不同的RDD实现。RDD必须是可序列化的。RDD可以cache到内存中,每次对RDD数据集的操作之后的结果,都可以存放到内存中,下一个操作可以直接从内存中输入,省去了MapRece大量的磁盘IO操作。这对于迭代运算比较常见的机器学习算法, 交互式数据挖掘来说,效率提升比较大。
RDD的特点:
1、它是在集群节点上的不可变的、已分区的集合对象。
2、用并行转换的方式来创建如(map, filter, join, etc)。
3、失败自动重建。
4、可以控制存储级别(内存、磁盘等)来进行重用。
5、必须是可序列化的。
5、是静态类型的。
RDD的好处:
1、RDD只能从持久存储或经过Transformations操作产生,相比于分布式共享内存(DSM)可以更高效实现容错,对于丢失部分数据分区只需根据它的lineage就可重新计算出来,而不需要做特定的Checkpoint。
2、RDD的不变性,可以实现类Hadoop MapRece的推测式执行。
3、RDD的数据分区特性,可以用数据的本地性来提高性能,这与Hadoop MapRece是一样的。
4、RDD都是可序列化的,在内存不足时可自动降级为磁盘存储,把RDD存储于磁盘上,这时性能会有大的下降但不会差于现在的MapRece。
RDD的存储与分区
1、用户可以选择不同的存储级别存储RDD以便重用。
2、当前RDD默认是存储于内存,但当内存不足时,RDD会spill到disk。
3、RDD在需要进行分区把数据分布于集群中时会根据每条记录Key进行分区(如Hash 分区),以此保证两个数据集在Join时能高效。
RDD的内部表示
在RDD的内部实现中每个RDD都可以使用5个方面的特性来表示:
1、分区列表(数据块列表)
2、计算每个分片的函数(根据父RDD计算出此RDD)
3、对父RDD的依赖列表
4、对key-value RDD的Partitioner【可选】
5、每个数据分片的预定义地址列表(如HDFS上的数据块的地址)【可选】
大数据是互联网发展的方向,大数据人才是未来的高薪贵族。随着大数据人才的供不应求,大数据人才的薪资待遇也在不断提升。

F. 金融需要 hadoop,spark 等这些大数据分析工具吗使用场景是怎样的

看看用亿信ABI做的相关案例
银行大数据应用
国内不少银行已经开始尝试通过大数据来驱动业务运营,如中信银行信用卡中心使用大数据技术实现了实时营销,光大银行建立了社交网络信息数据库,招商银行则利用大数据发展小微贷款。总的来看银行大数据应用可以分为四大方面:
1、客户画像
客户画像应用主要分为个人客户画像和企业客户画像。个人客户画像包括人口统计学特征、消费能力数据、兴趣数据、风险偏好等;企业客户画像包括企业的生产、流通、运营、财务、销售和客户数据、相关产业链上下游等数据。值得注意的是,银行拥有的客户信息并不全面,基于银行自身拥有的数据有时候难以得出理想的结果甚至可能得出错误的结论。比如,如果某位信用卡客户月均刷卡8次,平均每次刷卡金额800元,平均每年打4次客服电话,从未有过投诉,按照传统的数据分析,该客户是一位满意度较高流失风险较低的客户。但如果看到该客户的微博,得到的真实情况是:工资卡和信用卡不在同一家银行,还款不方便,好几次打客服电话没接通,客户多次在微博上抱怨,该客户流失风险较高。所以银行不仅仅要考虑银行自身业务所采集到的数据,更应考虑整合外部更多的数据,以扩展对客户的了解。包括:
(1)客户在社交媒体上的行为数据(如光大银行建立了社交网络信息数据库)。通过打通银行内部数据和外部社会化的数据可以获得更为完整的客户拼图,从而进行更为精准的营销和管理;
(2)客户在电商网站的交易数据,如建设银行则将自己的电子商务平台和信贷业务结合起来,阿里金融为阿里巴巴用户提供无抵押贷款,用户只需要凭借过去的信用即可;
(3)企业客户的产业链上下游数据。如果银行掌握了企业所在的产业链上下游的数据,可以更好掌握企业的外部环境发展情况,从而可以预测企业未来的状况;
(4)其他有利于扩展银行对客户兴趣爱好的数据,如网络广告界目前正在兴起的DMP数据平台的互联网用户行为数据。
2、精准营销
在客户画像的基础上银行可以有效的开展精准营销,包括:
(1)实时营销。实时营销是根据客户的实时状态来进行营销,比如客户当时的所在地、客户最近一次消费等信息来有针对地进行营销(某客户采用信用卡采购孕妇用品,可以通过建模推测怀孕的概率并推荐孕妇类喜欢的业务);或者将改变生活状态的事件(换工作、改变婚姻状况、置居等)视为营销机会;
(2)交叉营销。即不同业务或产品的交叉推荐,如招商银行可以根据客户交易记录分析,有效地识别小微企业客户,然后用远程银行来实施交叉销售;
(3)个性化推荐。银行可以根据客户的喜欢进行服务或者银行产品的个性化推荐,如根据客户的年龄、资产规模、理财偏好等,对客户群进行精准定位,分析出其潜在金融服务需求,进而有针对性的营销推广;
(4)客户生命周期管理。客户生命周期管理包括新客户获取、客户防流失和客户赢回等。如招商银行通过构建客户流失预警模型,对流失率等级前20%的客户发售高收益理财产品予以挽留,使得金卡和金葵花卡客户流失率分别降低了15个和7个百分点。
3、风险管理与风险控制
在风险管理和控制方面包括中小企业贷款风险评估和欺诈交易识别等手段
(1)中小企业贷款风险评估。银行可通过企业的产、流通、销售、财务等相关信息结合大数据挖掘方法进行贷款风险分析,量化企业的信用额度,更有效的开展中小企业贷款。
(2)实时欺诈交易识别和反洗钱分析。银行可以利用持卡人基本信息、卡基本信息、交易历史、客户历史行为模式、正在发生行为模式(如转账)等,结合智能规则引擎(如从一个不经常出现的国家为一个特有用户转账或从一个不熟悉的位置进行在线交易)进行实时的交易反欺诈分析。如IBM金融犯罪管理解决方案帮助银行利用大数据有效地预防与管理金融犯罪,摩根大通银行则利用大数据技术追踪盗取客户账号或侵入自动柜员机(ATM)系统的罪犯。
4、运营优化
(1)市场和渠道分析优化。通过大数据,银行可以监控不同市场推广渠道尤其是网络渠道推广的质量,从而进行合作渠道的调整和优化。同时,也可以分析哪些渠道更适合推广哪类银行产品或者服务,从而进行渠道推广策略的优化。
(2)产品和服务优化:银行可以将客户行为转化为信息流,并从中分析客户的个性特征和风险偏好,更深层次地理解客户的习惯,智能化分析和预测客户需求,从而进行产品创新和服务优化。如兴业银行目前对大数据进行初步分析,通过对还款数据挖掘比较区分优质客户,根据客户还款数额的差别,提供差异化的金融产品和服务方式。
(3)舆情分析:银行可以通过爬虫技术,抓取社区、论坛和微博上关于银行以及银行产品和服务的相关信息,并通过自然语言处理技术进行正负面判断,尤其是及时掌握银行以及银行产品和服务的负面信息,及时发现和处理问题;对于正面信息,可以加以总结并继续强化。同时,银行也可以抓取同行业的银行正负面信息,及时了解同行做的好的方面,以作为自身业务优化的借鉴。

G. 金融需要 hadoop、spark 等这些大数据分析工具吗使用场景是怎样的

首先,金融业的涵盖非常之广,主要包括三大类:银行类、投资类和保险类。具体则很多:商业银行、投资银行、证券、保险、小贷公司、租赁等。而且随着时代和技术发展,还出现了各类新型金融机构,比如:消费贷、P2P等等。其次,金融业基本是全世界各个行业中最依赖于数据的,而且最容易实现数据的变现。

而最近大火的UBI(Usage Based Insurance)更是将大数据技术的使用推向新高度。甚至通过在保险购买者的车辆上安装检测OBD数据的硬件设备来获取各项数据,从而对好司机和坏司机差别定价保费。

H. 科大讯飞大数据分析股票

随着科学技术的不断革新,人工智能产品不断走向我们的日常生活,改变我们的生活方式。与此同时,这个新兴领域也备受资本市场的关注,今天学姐就跟大家好好说一说国内人工智能的头部企业--科大讯飞。在开始分析科大讯飞前,先给大家奉上这份人工智能行业龙头股名单,还不赶紧浏览一下:宝藏资料:人工智能行业龙头股名单


一、从公司角度来看


公司介绍:科大讯飞是一家专业从事语音及语言、自然语言理解、机器学习推理及自主学习等人工智能核心技术研究,人工智能产品研发和行业应用落地的国家级骨干软件企业。科大讯飞作为中国人工智能产业的开拓者,躬耕人工智能领域二十年,在社会价值上,公司始终有着自己的坚持,就是为经济社会发展提供阳光健康、高技术屏障、高附加值。我们一起来看看这家公司有哪些优点吧:


优势一、国内人工智能的领导者,技术水平国际领先


科大讯飞以“让机器能听会说,能理解会思考,利用人工智能建设美好世界"作为使命,承建有国家新一代人工智能开放创新平台、语音及语言信息处理国家工程实验室以及认知智能领域的首个国家级重点实验室等国家级重要平台。


优势二、业绩持续高增长,产业生态持续扩大


智慧教育和智慧医疗的发展水平突飞猛进,开放平台、智能硬件、汽车业务表现得都十分优秀,其中包括讯飞AI学习机销量持续增长、智医助理业务实现了基层常态化使用、发者数量和质量同步提升以及智能办公本、录音笔等硬件销售大幅增加。同时,公司为开发者团队提供从初生、壮大到商业价值升级的全链路服务,并且还构造建设了讯飞AI营销平台、讯飞智能工业平台等能力平台,推动着AI行业生态持续不断的扩大。因为篇幅已经够了,关于科大讯飞的深度报告和风险提示的详情,一些我整理出来的内容写在了这篇研报当中,点击的话就可以查看阅读:【深度研报】科大讯飞点评,建议收藏!


二、从行业角度来看


预计到2025年,AI带来的产业产值将超过6万亿美金的规模,从目前的全球AI市场来看,其规模已超1万亿美元,中国的市场超1千亿元。人工智能产业形成了企业+行业+人力的全方位变革。企业数字化的局势发展日益凸显,智慧化应用能够将消费者潜在需求给满足。无人驾驶、语音识别、专家系统、智适应学习和机器视觉是在近几年中特别受关注的几个应用方向。对于人工智能发展来说,各国政府都非常支持,并将其上升至国家战略层面,放出积极信息。总的来说,我认为科大讯飞公司作为人工智能行业中的龙头企业,有望于此行业高速发展之时获得较大利润。但是文章内容存在延迟,如果想更准确地知道科大讯飞未来行情,直接点击链接,有专业的投资顾问帮你诊断股票,看下科大讯飞现在行情是否是对应一个好时机,可以买入或卖出:【免费】测一测科大讯飞还有机会吗?


应答时间:2021-09-09,最新业务变化以文中链接内展示的数据为准,请点击查看

I. 大数据spark 和 hodoop 这两个什么情况未来哪个会取代哪个

Hadoop包括MapRece和HDFS,目前很火的Spark,如果说代替,只是会代替Hadoop中的MapRece。Spark在任务调度和数据可靠性方面,确实比MapRece要快很多,而且支持将数据缓存到内存中,下次查的时候直接基于内存访问。

Spark:
是一个基于内存计算的开源的集群计算系统,目的是让数据分析更加快速, Spark 是一种与 Hadoop
相似的开源集群计算环境,但是两者之间还存在一些不同之处,这些有用的不同之处使 Spark 在某些工作负载方面表现得更加优越,换句话说,Spark
启用了内存分布数据集,除了能够提供交互式查询外,它还可以优化迭代工作负载。
Spark 是在 Scala 语言中实现的,它将 Scala 用作其应用程序框架。与 Hadoop 不同,Spark 和 Scala 能够紧密集成,其中的 Scala 可以像操作本地集合对象一样轻松地操作分布式数据集。

管创建 Spark 是为了支持分布式数据集上的迭代作业,但是实际上它是对 Hadoop 的补充,可以在 Hadoop
文件系统中并行运行。通过名为Mesos的第三方集群框架可以支持此行为。Spark 由加州大学伯克利分校 AMP 实验室
(Algorithms,Machines,and People Lab) 开发,可用来构建大型的、低延迟的数据分析应用程序。
虽然 Spark 与 Hadoop 有相似之处,但它提供了具有有用差异的一个新的集群计算框架。首先,Spark
是为集群计算中的特定类型的工作负载而设计,即那些在并行操作之间重用工作数据集(比如机器学习算法)的工作负载。为了优化这些类型的工作负
载,Spark 引进了内存集群计算的概念,可在内存集群计算中将数据集缓存在内存中,以缩短访问延迟.
在大数据处理方面相信大家对hadoop已经耳熟能详,基于GoogleMap/Rece来实现的Hadoop为开发者提供了map、rece原
语,使并行批处理程序变得非常地简单和优美。Spark提供的数据集操作类型有很多种,不像Hadoop只提供了Map和Rece两种操作。比如
map,filter, flatMap,sample, groupByKey, receByKey, union,join,
cogroup,mapValues,
sort,partionBy等多种操作类型,他们把这些操作称为Transformations。同时还提供Count,collect,
rece, lookup,
save等多种actions。这些多种多样的数据集操作类型,给上层应用者提供了方便。各个处理节点之间的通信模型不再像Hadoop那样就是唯一的
Data Shuffle一种模式。用户可以命名,物化,控制中间结果的分区等。可以说编程模型比Hadoop更灵活.

J. 大数据中的Spark指的是什么

Spark是一种通用的大数据计算框架,和传统的大数据技术MapRece有本质区别。前者是基于内存并行计算的框架,而maprece侧重磁盘计算。Spark是加州大学伯克利分校AMP实验室开发的通用内存并行计算框架,用于构建大型的、低延迟的数据分析应用程序。
Spark同样支持离线计算和实时计算两种模式。Spark离线计算速度要比Maprece快10-100倍。而实时计算方面,则依赖于SparkStreaming的批处理能力,吞吐量大。不过相比Storm,SparkStreaming并不能做到真正的实时。
Spark使用强大的函数式语言Scala开发,方便简单。同时,它还提供了对Python、Java和R语言的支持。
作为大数据计算框架MapRece的继任者,Spark具备以下优势特性。
1,高效性
不同于MapRece将中间计算结果放入磁盘中,Spark采用内存存储中间计算结果,减少了迭代运算的磁盘IO,并通过并行计算DAG图的优化,减少了不同任务之间的依赖,降低了延迟等待时间。内存计算下,Spark 比 MapRece 快100倍。
2,易用性
不同于MapRece仅支持Map和Rece两种编程算子,Spark提供了超过80种不同的Transformation和Action算子,如map,rece,filter,groupByKey,sortByKey,foreach等,并且采用函数式编程风格,实现相同的功能需要的代码量极大缩小。
3,通用性
Spark提供了统一的解决方案。Spark可以用于批处理、交互式查询(Spark SQL)、实时流处理(Spark Streaming)、机器学习(Spark MLlib)和图计算(GraphX)。
4,兼容性
Spark能够跟很多开源工程兼容使用。如Spark可以使用Hadoop的YARN和Apache Mesos作为它的资源管理和调度器,并且Spark可以读取多种数据源,如HDFS、HBase、MySQL等。