1. 波动聚类(volatility clustering)
经典资本市场理论在描述股票市场收益率变化时,所采用的计量模型一般都假定收益率方差保持不变。这一模型符合金融市场中有效市场理论,运用简便,常用来预测和估算股票价格。但对金融数据的大量实证研究表明,有些假设不甚合理。一些金融时间序列常常会出现某一特征的值成群出现的现象。如对股票收益率建模,其随机搅动项往往在较大幅度波动后面伴随着较大幅度的波动,在较小波动幅度后面紧接着较小幅度的波动,这种性质称为波动率聚类(volatility clustering)。该现象的出现源于外部冲击对股价波动的持续性影响,在收益率的分布上则表现为出尖峰厚尾(fattails)的特征。
2. 数据挖掘相关问题
2.聚类结果{2,4,10,12,3,11}{20}{30,25}
3.移动平均结果
{10.83333333
10.33333333
11.16666667
10.33333333
11.83333333
12.5
10.83333333
11.33333333
10.5
11.33333333
9.833333333
9.166666667
}
4.预测股票价格的方法:时间序列方法
3. 股票数据采集难吗
要想自己采也行,我之前采过股市数据。用的是ForeSpider这个软件。这个软件他自身有数据挖掘分析功能,自己就进行聚类分类,统计分析了,采集的结果入库后可以形成分析报表,直接浏览就行了,还是很方便的,你可以去看看。操作也是不难,非计算机专业的人也能使。
希望我的回答对你有帮助。
4. 如何用Python和机器学习炒股赚钱
相信很多人都想过让人工智能来帮你赚钱,但到底该如何做呢?瑞士日内瓦的一位金融数据顾问 Gaëtan Rickter 近日发表文章介绍了他利用 Python 和机器学习来帮助炒股的经验,其最终成果的收益率跑赢了长期处于牛市的标准普尔 500 指数。虽然这篇文章并没有将他的方法完全彻底公开,但已公开的内容或许能给我们带来如何用人工智能炒股的启迪。
我终于跑赢了标准普尔 500 指数 10 个百分点!听起来可能不是很多,但是当我们处理的是大量流动性很高的资本时,对冲基金的利润就相当可观。更激进的做法还能得到更高的回报。
这一切都始于我阅读了 Gur Huberman 的一篇题为《Contagious Speculation and a Cure for Cancer: A Non-Event that Made Stock Prices Soar》的论文。该研究描述了一件发生在 1998 年的涉及到一家上市公司 EntreMed(当时股票代码是 ENMD)的事件:
「星期天《纽约时报》上发表的一篇关于癌症治疗新药开发潜力的文章导致 EntreMed 的股价从周五收盘时的 12.063 飙升至 85,在周一收盘时接近 52。在接下来的三周,它的收盘价都在 30 以上。这股投资热情也让其它生物科技股得到了溢价。但是,这个癌症研究方面的可能突破在至少五个月前就已经被 Nature 期刊和各种流行的报纸报道过了,其中甚至包括《泰晤士报》!因此,仅仅是热情的公众关注就能引发股价的持续上涨,即便实际上并没有出现真正的新信息。」
在研究者给出的许多有见地的观察中,其中有一个总结很突出:
「(股价)运动可能会集中于有一些共同之处的股票上,但这些共同之处不一定要是经济基础。」
我就想,能不能基于通常所用的指标之外的其它指标来划分股票。我开始在数据库里面挖掘,几周之后我发现了一个,其包含了一个分数,描述了股票和元素周期表中的元素之间的「已知和隐藏关系」的强度。
我有计算基因组学的背景,这让我想起了基因和它们的细胞信号网络之间的关系是如何地不为人所知。但是,当我们分析数据时,我们又会开始看到我们之前可能无法预测的新关系和相关性。
如果你使用机器学习,就可能在具有已知和隐藏关系的上市公司的寄生、共生和共情关系之上抢占先机,这是很有趣而且可以盈利的。最后,一个人的盈利能力似乎完全关乎他在生成这些类别的数据时想出特征标签(即概念(concept))的强大组合的能力。
我在这类模型上的下一次迭代应该会包含一个用于自动生成特征组合或独特列表的单独算法。也许会基于近乎实时的事件,这可能会影响那些具有只有配备了无监督学习算法的人类才能预测的隐藏关系的股票组。
5. 量化投资—策略与技术的作品目录
《量化投资—策略与技术》
策略篇
第 1章 量化投资概念
1.1 什么是量化投资 2
1.1.1 量化投资定义 2
1.1.2 量化投资理解误区 3
1.2 量化投资与传统投资比较 6
1.2.1 传统投资策略的缺点 6
1.2.2 量化投资策略的优势 7
1.2.3 量化投资与传统投资策略的比较 8
1.3 量化投资历史 10
1.3.1 量化投资理论发展 10
1.3.2 海外量化基金的发展 12
1.3.3 量化投资在中国 15
1.4 量化投资主要内容 16
1.5 量化投资主要方法 21
.第 2章 量化选股 25
2.1 多因子 26
2.1.1 基本概念 27
2.1.2 策略模型 27
2.1.3 实证案例:多因子选股模型 30
2.2 风格轮动 35
2.2.1 基本概念 35
2.2.2 盈利预期生命周期模型 38
2.2.3 策略模型 40
2.2.4 实证案例:中信标普风格 41
2.2.5 实证案例:大小盘风格 44
2.3 行业轮动 47
2.3.1 基本概念 47
2.3.2 m2行业轮动策略 50
2.3.3 市场情绪轮动策略 52
2.4 资金流 56
2.4.1 基本概念 56
2.4.2 策略模型 59
2.4.3 实证案例:资金流选股策略 60
2.5 动量反转 63
2.5.1 基本概念 63
2.5.2 策略模型 67
2.5.3 实证案例:动量选股策略和反转选股策略 70
2.6 一致预期 73
2.6.1 基本概念 74
2.6.2 策略模型 76
2.6.3 实证案例:一致预期模型案例 78
2.7 趋势追踪 84
2.7.1 基本概念 84
2.7.2 策略模型 86
2.7.3 实证案例:趋势追踪选股模型 92
2.8 筹码选股 94
2.8.1 基本概念 95
2.8.2 策略模型 97
2.8.3 实证案例:筹码选股模型 99
2.9 业绩评价 104
2.9.1 收益率指标 104
2.9.2 风险度指标 105
第 3章 量化择时 111
3.1 趋势追踪 112
3.1.1 基本概念 112
3.1.2 传统趋势指标 113
3.1.3 自适应均线 121
3.2 市场情绪 125
3.2.1 基本概念 126
3.2.2 情绪指数 128
3.2.3 实证案例:情绪指标择时策略 129
3.3 有效资金 133
3.3.1 基本概念 133
3.3.2 策略模型 134
3.3.3 实证案例:有效资金择时模型 137
3.4 牛熊线 141
3.4.1 基本概念 141
3.4.2 策略模型 143
3.4.3 实证案例:牛熊线择时模型 144
3.5 husrt指数 146
3.5.1 基本概念 146
3.5.2 策略模型 148
3.5.3 实证案例 149
3.6 支持向量机 152
3.6.1 基本概念 152
3.6.2 策略模型 153
3.6.3 实证案例:svm择时模型 155
3.7 swarch模型 160
3.7.1 基本概念 160
3.7.2 策略模型 161
3.7.3 实证案例:swarch模型 164
3.8 异常指标 168
3.8.1 市场噪声 168
3.8.2 行业集中度 170
3.8.3 兴登堡凶兆 172
第 4章 股指期货套利 180
4.1 基本概念 181
4.1.1 套利介绍 181
4.1.2 套利策略 183
4.2 期现套利 185
4.2.1 定价模型 185
4.2.2 现货指数复制 186
4.2.3 正向套利案例 190
4.2.4 结算日套利 192
4.3 跨期套利 195
4.3.1 跨期套利原理 195
4.3.2 无套利区间 196
4.3.3 跨期套利触发和终止 197
4.3.4 实证案例:跨期套利策略 199
4.3.5 主要套利机会 200
4.4 冲击成本 203
4.4.1 主要指标 204
4.4.2 实证案例:冲击成本 205
4.5 保证金管理 208
4.5.1 var方法 208
4.5.2 var计算方法 209
4.5.3 实证案例 211
第 5章 商品期货套利 214
5.1 基本概念 215
5.1.1 套利的条件 216
5.1.2 套利基本模式 217
5.1.3 套利准备工作 219
5.1.4 常见套利组合 221
5.2 期现套利 225
5.2.1 基本原理 225
5.2.2 操作流程 226
5.2.3 增值税风险 230
5.3 跨期套利 231
5.3.1 套利策略 231
5.3.2 实证案例:pvc跨期套利策略 233
5.4 跨市场套利 234
5.4.1 套利策略 234
5.4.2 实证案例:伦铜—沪铜跨市场套利 235
5.5 跨品种套利 236
5.5.1 套利策略 237
5.5.2 实证案例 238
5.6 非常状态处理 240
第 6章 统计套利 242
6.1 基本概念 243
6.1.1 统计套利定义 243
6.1.2 配对交易 244
6.2 配对交易 247
6.2.1 协整策略 247
6.2.2 主成分策略 254
6.2.3 绩效评估 256
6.2.4 实证案例:配对交易 258
6.3 股指套利 261
6.3.1 行业指数套利 261
6.3.2 国家指数套利 263
6.3.3 洲域指数套利 264
6.3.4 全球指数套利 266
6.4 融券套利 267
6.4.1 股票—融券套利 267
6.4.2 可转债—融券套利 268
6.4.3 股指期货—融券套利 269
6.4.4 封闭式基金—融券套利 271
6.5 外汇套利 272
6.5.1 利差套利 273
6.5.2 货币对套利 275
第 7章 期权套利 277
7.1 基本概念 278
7.1.1 期权介绍 278
7.1.2 期权交易 279
7.1.3 牛熊证 280
7.2 股票/期权套利 283
7.2.1 股票—股票期权套利 283
7.2.2 股票—指数期权套利 284
7.3 转换套利 285
7.3.1 转换套利 285
7.3.2 反向转换套利 287
7.4 跨式套利 288
7.4.1 买入跨式套利 289
7.4.2 卖出跨式套利 291
7.5 宽跨式套利 293
7.5.1 买入宽跨式套利 293
7.5.2 卖出宽跨式套利 294
7.6 蝶式套利 296
7.6.1 买入蝶式套利 296
7.6.2 卖出蝶式套利 298
7.7 飞鹰式套利 299
7.7.1 买入飞鹰式套利 300
7.7.2 卖出飞鹰式套利 301
第 8章 算法交易 304
8.1 基本概念 305
8.1.1 算法交易定义 305
8.1.2 算法交易分类 306
8.1.3 算法交易设计 308
8.2 被动交易算法 309
8.2.1 冲击成本 310
8.2.2 等待风险 312
8.2.3 常用被动型交易策略 314
8.3 vwap算法 316
8.3.1 标准vwap算法 316
8.3.2 改进型vwap算法 319
第 9章 其他策略 323
9.1 事件套利 324
9.1.1 并购套利策略 324
9.1.2 定向增发套利 325
9.1.3 套利重仓停牌股票的投资组合 326
9.1.4 封闭式投资组合套利 327
9.2 etf套利 328
9.2.1 基本概念 328
9.2.2 无风险套利 330
9.2.3 其他套利 334
9.3 lof套利 335
9.3.1 基本概念 335
9.3.2 模型策略 336
9.3.3 实证案例:lof 套利 337
9.4 高频交易 341
9.4.1 流动性回扣交易 341
9.4.2 猎物算法交易 342
9.4.3 自动做市商策略 343
9.4.4 程序化交易 343
理论篇
第 10章 人工智能 346
10.1 主要内容 347
10.1.1 机器学习 347
10.1.2 自动推理 350
10.1.3 专家系统 353
10.1.4 模式识别 356
10.1.5 人工神经网络 358
10.1.6 遗传算法 362
10.2 人工智能在量化投资中的应用 366
10.2.1 模式识别短线择时 366
10.2.2 rbf神经网络股价预测 370
10.2.3 基于遗传算法的新股预测 375
第 11章 数据挖掘 381
11.1 基本概念 382
11.1.1 主要模型 382
11.1.2 典型方法 384
11.2 主要内容 385
11.2.1 分类与预测 385
11.2.2 关联规则 391
11.2.3 聚类分析 397
11.3 数据挖掘在量化投资中的应用 400
11.3.1 基于som 网络的股票聚类分析方法 400
11.3.2 基于关联规则的板块轮动 403
第 12章 小波分析 407
12.1 基本概念 408
12.2 小波变换主要内容 409
12.2.1 连续小波变换 409
12.2.2 连续小波变换的离散化 410
12.2.3 多分辨分析与mallat算法 411
12.3小波分析在量化投资中的应用 414
12.3.1 k线小波去噪 414
12.3.2 金融时序数据预测 420
第 13章 支持向量机 429
13.1 基本概念 430
13.1.1 线性svm 430
13.1.2 非线性svm 433
13.1.3 svm分类器参数选择 435
13.1.4 svm分类器从二类到多类的推广 436
13.2 模糊支持向量机 437
13.2.1 增加模糊后处理的svm 437
13.2.2 引入模糊因子的svm训练算法 439
13.3 svm在量化投资中的应用 440
13.3.1 复杂金融时序数据预测 440
13.3.2 趋势拐点预测 445
第 14章 分形理论 452
14.1 基本概念 453
14.1.1 分形定义 453
14.1.2 几种典型的分形 454
14.1.3 分形理论的应用 456
14.2 主要内容 457
14.2.1 分形维数 457
14.2.2 l系统 458
14.2.3 ifs系统 460
14.3 分形理论在量化投资中的应用 461
14.3.1 大趋势预测 461
14.3.2 汇率预测 466
第 15章 随机过程 473
15.1 基本概念 473
15.2 主要内容 476
15.2.1 随机过程的分布函数 476
15.2.2 随机过程的数字特征 476
15.2.3 几种常见的随机过程 477
15.2.4 平稳随机过程 479
15.3 灰色马尔可夫链股市预测 480
第 16章 it技术 486
16.1 数据仓库技术 486
16.1.1 从数据库到数据仓库 487
16.1.2 数据仓库中的数据组织 489
16.1.3 数据仓库的关键技术 491
16.2 编程语言 493
16.2.1 GPU算法交易 493
16.2.2 MATLAB 语言 497
16.2.3 c#语言 504
第 17章 主要数据与工具 509
17.1 名策多因子分析系统 509
17.2 MultiCharts:程序化交易平台 511
17.3 交易开拓者:期货自动交易平台 514
17.4 大连交易所套利指令 518
17.5 mt5:外汇自动交易平台 522
第 18章 量化对冲交易系统:D-alpha 528
18.1 系统构架 528
18.2 策略分析流程 530
18.3 核心算法 532
18.4 验证结果 534
表目录
表1 1 不同投资策略对比 7
表2 1 多因子选股模型候选因子 30
表2 2 多因子模型候选因子初步检验 31
表2 3 多因子模型中通过检验的有效因子 32
表2 4 多因子模型中剔除冗余后的因子 33
表2 5 多因子模型组合分段收益率 33
表2 6 晨星市场风格判别法 36
表2 7 夏普收益率基础投资风格鉴别 37
表2 8 中信标普风格指数 41
表2 9 风格动量策略组合月均收益率 43
表2 10 大小盘风格轮动策略月收益率均值 46
表2 11 中国货币周期分段(2000—2009年) 49
表2 12 沪深300行业指数统计 50
表2 13 不同货币阶段不同行业的收益率 51
表2 14 招商资金流模型(cmsmf)计算方法 58
表2 15 招商资金流模型(cmsmf)选股指标定义 59
表2 16 资金流模型策略——沪深300 61
表2 17 资金流模型策略——全市场 62
表2 18 动量组合相对基准的平均年化超额收益(部分) 68
表2 19 反转组合相对基准的平均年化超额收益(部分) 69
表2 20 动量策略风险收益分析 71
表2 21 反转策略风险收益分析 73
表2 22 趋势追踪技术收益率 93
表2 23 筹码选股模型中单个指标的收益率情况对比 99
表3 1 ma指标择时测试最好的20 组参数及其表现 117
表3 2 4个趋势型指标最优参数下的独立择时交易表现比较 120
表3 3 有交易成本情况下不同信号个数下的综合择时策略 120
表3 4 自适应均线择时策略收益率分析 124
表3 5 市场情绪类别 126
表3 6 沪深300指数在不同情绪区域的当月收益率比较 128
表3 7 沪深300指数在不同情绪变化区域的当月收益率比较 129
表3 8 沪深300指数在不同情绪区域的次月收益率比较 130
表3 9 沪深300指数在不同情绪变化区域的次月收益率比较 130
表3 10 情绪指数择时收益率统计 132
表3 11 svm择时模型的指标 156
表3 12 svm对沪深300指数预测结果指标汇总 156
表3 13 svm择时模型在整体市场的表现 156
表3 14 svm择时模型在单边上涨市的表现 157
表3 15 svm择时模型在单边下跌市的表现 158
表3 16 svm择时模型在震荡市的表现 159
表3 17 噪声交易在熊市择时的收益率 170
表4 1 各种方法在不同股票数量下的跟踪误差(年化) 190
表4-2 股指期货多头跨期套利过程分析 199
表4 3 不同开仓比例下的不同保证金水平能够覆盖的市场波动及其概率 211
表4 4 不同仓单持有期下的保证金覆盖比例 212
表6 1 融券标的股票中在样本期内最相关的50 对组合(部分) 248
表6 2 残差的平稳性、自相关等检验 249
表6 3 在不同的阈值下建仓、平仓所能获得的平均收益 251
表6 4 采用不同的模型在样本内获取的收益率及最优阈值 252
表6 5 采用不同的模型、不同的外推方法在样本外获取的收益率(%) 253
表6 6 主成分配对交易在样本内取得的收益率及最优阈值 255
表6 7 主成分配对交易在样本外的效果 255
表6-8 各种模型下统计套利的结果 256
表6 9 延后开仓+提前平仓策略实证结果 260
表6 10 各行业的配对交易结果 261
表7 1 多头股票-期权套利综合分析表 283
表7 2 多头股票—股票期权套利案例损益分析表 284
表7 3 多头股票-指数期权套利案例损益分析表 285
表7 4 转换套利分析过程 286
表7 5 买入跨式套利综合分析表 289
表7 6 买入跨式套利交易细节 289
表7 7 卖出跨式套利综合分析表 291
表7 8 卖出跨式套利交易细节 292
表7 9 买入宽跨式套利综合分析表 293
表7 10 卖出宽跨式套利综合分析表 294
表7 11 买入蝶式套利综合分析表 296
表7 12 卖出蝶式套利综合分析表 298
表7 13 买入飞鹰套利分析表 300
表7 14 卖出飞鹰式套利综合分析表 301
表9 1 主要并购方式 324
表9 2 并购套利流程 325
表9 3 鹏华300 lof两次正向套利的情况 339
表9 4 鹏华300 lof两次反向套利的情况 340
表10 1 自动推理中连词系统 352
表10 2 模式识别短线择时样本数据分类 369
表10 3 rbf神经网络股价预测结果 375
表10 4 遗传算法新股预测参数设置 379
表10 5 遗传算法新股预测结果 380
表11 1 决策树数据表 389
表11 2 关联规则案例数据表 392
表11 3 som股票聚类分析结果 403
表11 4 21种股票板块指数布尔关系表数据片断 404
表12 1 深发展a日收盘价小波分析方法预测值与实际值比较 427
表12 2 不同分解层数的误差均方根值 428
表13 1 svm沪深300指数预测误差情况 445
表13 2 svm指数预测和神经网络预测的比较 445
表13 3 技术反转点定义与图型 448
表13 4 svm趋势拐点预测结果 450
表14 1 持续大涨前后分形各主要参数值 463
表14 2 持续大跌前后分形个主要参数值 465
表14 3 外汇r/ s 分析的各项指标 469
表14 4 v(r/s)曲线回归检验 470
表15 1 灰色马尔可夫链预测深证成指样本内(2005/1—2006/8) 484
表15 2 灰色马尔可夫链预测深证成指样本外(2006/9—2006/12) 484
表16-1 vba的12种数据类型 499
表18-1 d-alpha系统在全球市场收益率分析 534
6. 实时聚类分析,怎么操作
“十大股票软件排行榜”里有个股诊断功能,里面有效的分析了大盘及个股压力位支撑位及消息面分析,一切都是免费的。
7. 聚类分析在股票板块中的应用 急需此题论文!!
请先看看下面这教程,看能否找到你要的答案,不明再问我。。
www.fjmu.e.cn
8. Matlab如何计算股票的相关系数,平均路径长度,聚类系数。关于股票稳定性分析的,求大虾指教,不会做,求
好多乱码。。,
楼主,你问问题都这么不认真的话,也不要指望大家会认真的帮你想办法了。。。