當前位置:首頁 » 價格知識 » 股票價格預測時間序列

股票價格預測時間序列

發布時間: 2023-05-14 18:52:54

⑴ matlab高手進,關於ARMA時間序列預測的問題

我是懂matlab,可對這個不熟,我也能寫出LS的方程,但我相信沒用。

⑵ 請股票高手給我解釋一下江恩時間序列的奧秘

這是江恩選擇過的周期,最可能出現變異點的地方,你在圖上照著這個指標用就行了。要究其源的話去找個羅盤來看,中心是一也是一波價格的起始點,依次逆時針螺旋往外數格子,這些數字就是價格大概率變異點,時間周期在羅盤上是固定的24個格子,所以數的時候可以不管它,這些數字多是在時間格子的季節變異點處,你知道一年四季24節氣吧?江恩理論理論上很完美,但是市場價格不像地球運動周期那樣有規律,不過漲跌力量的逐漸轉換和季節的輪換是一樣的都有時間上的順序和價格轉變上的過程,江恩理論是唯一的分析價的格理論中同時考慮時間空間的預測方法,懂了江恩理論你會延伸的了解很多很多的東西,江恩很喜歡中國的易經,他的風格也是源於易經,你可以去看看

⑶ 如何利用機器學習演算法,准確預測股票市場的波動性

預測股票市場的波動性是一項復雜的任務,需要綜合考慮多方面的因素。以下是一些可能的方法:
1.時間序列模型:使用時間序列模型,如ARIMA、VAR、LSTM等,來對歷史股價數據進行建模和預測。這些模型可以利用股市的歷史波動和行情走勢來進行預測。
2.基本面分析:基於企業的財務狀況、行業發展趨勢等基本面數據,進行分析和預測。例如,利用財務報表的數據,可以分析企業的盈利能力、償債情況、經營風險等重要指標,從而對其股票的波動性進行預測。
3.技術分析:利純早用股票市場的技術指標,例如移動平均線、相對強弱指標等,來分析股票市場的走勢和波動性。這些指標可以根據歷史的數據進行計算,並且可以提供岩褲高有用的交易信號。
4.基於機器學習粗尺的演算法:利用機器學習演算法,如隨機森林、支持向量機等,來對股票價格變動進行預測。這些模型可以綜合考慮多種因素,例如股票歷史價格、市場指數、新聞事件、宏觀經濟變動等,來預測股票價格的變化。
需要注意的是,股票市場具有高度的不確定性和復雜性,因此預測股票價格波動性並不能保證完全准確,而是需要結合多種因素進行分析和判斷。

⑷ 時間序列在股市有哪些應用

時間序列分析在股票市場中的應用
摘要
在現代金融浪潮的推動下,越來越多的人加入到股市,進行投資行為,以期得到豐厚的回報,這極大促進了股票市場的繁榮。而在這種投資行為的背後,越來越多的投資者逐漸意識到股市預測的重要性。
所謂股票預測是指:根據股票現在行情的發展情況地對未來股市發展方向以及漲跌程度的預測行為。這種預測行為只是基於假定的因素為既定的前提條件為基礎的。但是在股票市場中,行情的變化與國家的宏觀經濟發展、法律法規的制定、公司的運營、股民的信心等等都有關聯,因此所謂的預測難於准確預計。
時間序列分析是經濟預測領域研究的重要工具之一,它描述歷史數據隨時間變化的規律,並用於預測經濟數據。在股票市場上,時間序列預測法常用於對股票價格趨勢進行預測,為投資者和股票市場管理管理方提供決策依據。

⑸ 應用計量經濟學時間序列分析在股票預測上有多大的作用

作用沒有想像中的大,你可以用股票的滯後變數來進行回歸分析,滯後2~3期就夠了,不過數據必須具體點,最好細分到每季度、每月的上證指數,還有時間上怎麼也要十年左右吧!

我以前在論文附錄中做過分析,數據都是自己按季度整理的,挺麻煩的呢,如果需要的話就發給你~

還有就是,我覺得寫關於股票的預測方面的實際用處並不是很大,畢竟股票的影響因素太多,單單的憑藉以前的走勢而預期太不好了。。我自己也炒股票,就像那些macd、kdj之類的指標根本就起不到太大的作用,如果那個能預期的話,股市豈不就成了提款機了?現在你做的這個就像是那些指標一樣,要知道,股市是活的,人是活的,而指標確實死的!說這么多的意思就是股市不是能簡單預測的,你做的那個用處不大。。

如果你想做的話,建議換個題目,我當時的寫的是對弗里德曼的貨幣需求理論在中國市場的分析。你可以寫寫貨幣供應量對通貨膨脹的時滯性,分析下在我國市場的滯後期大概是多少~數據在國家統計局和中國人民銀行都可以找到的,樣本空間一定要足夠大,在對滯後變數分析時候主要考慮各自的T檢驗是否通過,一般從通過之後大概就是那個的滯後期!這個比較直接反而有些許用處~
要是能分析出國家的一般性政策對實體市場的影響就更好了,更有用了~

呵呵,以上只是自己的建議~有什麼其他的問題就給我留言吧~

⑹ 怎麼用excel對股票收盤價進行時間序列分析

最好附上內容

⑺ 時間序列市場預測法很適用於什麼

時間序列市場預測法適用於以下塵盯握幾種場景:

1. 股票價格預測:可以通過分析過去幾年的股票價格趨勢,預測未來幾天、幾周或幾個月的則者股票價格。

2. 外匯市場預測:可以分析歷史貨幣匯率的變化,預測未來的匯率走勢。

3. 期貨市場預測:可以通過分析歷史期貨價格的波動和趨勢,預測未來期貨的價格變化。

4. 金融市場的預測:可以分析歷史金融市場的交易情況,預測派慶未來市場的走勢。

⑻ 如何利用計量經濟學方法估計金融市場的波動率,並預測未來的股票價格走勢

估計金融市場波動率的方法之一是使用GARCH模型。GARCH模型是一個非線性的時間序列模型,用來描述金融市場波動率的異方差性(volatilityclustering)。該模型可以通過歷史數據來估計未來波動率的水平和方向。以下是利用GARCH模型估計波動率和預測未來股票價格走勢的一般步驟:
1.收集歷史股票價格數據以及與該公司相關的其他經濟指標數據。這些數據可以從各種來源(比如財經新聞、股票網站等)收集。
2.進行數據清理和預處理。這涉及到處理異常值、缺失值和季節性等。
3.使用GARCH模型估計波動率。該模型可以包括ARCH(自回歸條件異方差)和GARCH(廣義自回歸條件異方差)模型。
4.模型擬合完成後,進行模型檢驗。這包括殘差分析和模型擬合優度的檢驗。
5.利用已估計出的波動率進行未來股票價格的預測。這可以通過將已估計出的波動率斗悉雀帶入股票價格的確定性模型來實現。
需要注意的是,GARCH模型僅能夠空早反映歷史數據中的波動率,無法准確地預測未來變化,因此預測結果僅供參考。同時,由於金融市場的復雜性和不確定性,建議在進行金融決策時,需綜合考慮各種因素,而不能僅僅依賴統計模型的預測陸余。

⑼ 對股票收盤價進行時間序列分析,預測其下一個交易日的收盤價,並與實際收盤價格進行對比

股票投資的分析這么復雜啊,先問問老師有依據這個買股票沒,再回答。