當前位置:首頁 » 價格知識 » 基於lstm的股票價格趨勢預測
擴展閱讀
擅自炒作別人股票賬戶 2025-02-02 09:33:58
銀河表計股票代碼 2025-02-02 09:29:16
中國股市一直漲的股票 2025-02-02 08:39:22

基於lstm的股票價格趨勢預測

發布時間: 2023-03-09 15:47:01

A. 如何在Python中用LSTM網路進行時間序列預測

時間序列模型

時間序列預測分析就是利用過去一段時間內某事件時間的特徵來預測未來一段時間內該事件的特徵。這是一類相對比較復雜的預測建模問題,和回歸分析模型的預測不同,時間序列模型是依賴於事件發生的先後順序的,同樣大小的值改變順序後輸入模型產生的結果是不同的。
舉個栗子:根據過去兩年某股票的每天的股價數據推測之後一周的股價變化;根據過去2年某店鋪每周想消費人數預測下周來店消費的人數等等

RNN 和 LSTM 模型

時間序列模型最常用最強大的的工具就是遞歸神經網路(recurrent neural network, RNN)。相比與普通神經網路的各計算結果之間相互獨立的特點,RNN的每一次隱含層的計算結果都與當前輸入以及上一次的隱含層結果相關。通過這種方法,RNN的計算結果便具備了記憶之前幾次結果的特點。

典型的RNN網路結構如下:

4. 模型訓練和結果預測
將上述數據集按4:1的比例隨機拆分為訓練集和驗證集,這是為了防止過度擬合。訓練模型。然後將數據的X列作為參數導入模型便可得到預測值,與實際的Y值相比便可得到該模型的優劣。

實現代碼

  • 時間間隔序列格式化成所需的訓練集格式

  • import pandas as pdimport numpy as npdef create_interval_dataset(dataset, look_back):

  • """ :param dataset: input array of time intervals :param look_back: each training set feature length :return: convert an array of values into a dataset matrix. """

  • dataX, dataY = [], [] for i in range(len(dataset) - look_back):

  • dataX.append(dataset[i:i+look_back])

  • dataY.append(dataset[i+look_back]) return np.asarray(dataX), np.asarray(dataY)


  • df = pd.read_csv("path-to-your-time-interval-file")

  • dataset_init = np.asarray(df) # if only 1 columndataX, dataY = create_interval_dataset(dataset, lookback=3) # look back if the training set sequence length

  • 這里的輸入數據來源是csv文件,如果輸入數據是來自資料庫的話可以參考這里

  • LSTM網路結構搭建

  • import pandas as pdimport numpy as npimport randomfrom keras.models import Sequential, model_from_jsonfrom keras.layers import Dense, LSTM, Dropoutclass NeuralNetwork():

  • def __init__(self, **kwargs):

  • """ :param **kwargs: output_dim=4: output dimension of LSTM layer; activation_lstm='tanh': activation function for LSTM layers; activation_dense='relu': activation function for Dense layer; activation_last='sigmoid': activation function for last layer; drop_out=0.2: fraction of input units to drop; np_epoch=10, the number of epoches to train the model. epoch is one forward pass and one backward pass of all the training examples; batch_size=32: number of samples per gradient update. The higher the batch size, the more memory space you'll need; loss='mean_square_error': loss function; optimizer='rmsprop' """

  • self.output_dim = kwargs.get('output_dim', 8) self.activation_lstm = kwargs.get('activation_lstm', 'relu') self.activation_dense = kwargs.get('activation_dense', 'relu') self.activation_last = kwargs.get('activation_last', 'softmax') # softmax for multiple output

  • self.dense_layer = kwargs.get('dense_layer', 2) # at least 2 layers

  • self.lstm_layer = kwargs.get('lstm_layer', 2) self.drop_out = kwargs.get('drop_out', 0.2) self.nb_epoch = kwargs.get('nb_epoch', 10) self.batch_size = kwargs.get('batch_size', 100) self.loss = kwargs.get('loss', 'categorical_crossentropy') self.optimizer = kwargs.get('optimizer', 'rmsprop') def NN_model(self, trainX, trainY, testX, testY):

  • """ :param trainX: training data set :param trainY: expect value of training data :param testX: test data set :param testY: epect value of test data :return: model after training """

  • print "Training model is LSTM network!"

  • input_dim = trainX[1].shape[1]

  • output_dim = trainY.shape[1] # one-hot label

  • # print predefined parameters of current model:

  • model = Sequential() # applying a LSTM layer with x dim output and y dim input. Use dropout parameter to avoid overfitting

  • model.add(LSTM(output_dim=self.output_dim,

  • input_dim=input_dim,

  • activation=self.activation_lstm,

  • dropout_U=self.drop_out,

  • return_sequences=True)) for i in range(self.lstm_layer-2):

  • model.add(LSTM(output_dim=self.output_dim,

  • input_dim=self.output_dim,

  • activation=self.activation_lstm,

  • dropout_U=self.drop_out,

  • return_sequences=True)) # argument return_sequences should be false in last lstm layer to avoid input dimension incompatibility with dense layer

  • model.add(LSTM(output_dim=self.output_dim,

  • input_dim=self.output_dim,

  • activation=self.activation_lstm,

  • dropout_U=self.drop_out)) for i in range(self.dense_layer-1):

  • model.add(Dense(output_dim=self.output_dim,

  • activation=self.activation_last))

  • model.add(Dense(output_dim=output_dim,

  • input_dim=self.output_dim,

  • activation=self.activation_last)) # configure the learning process

  • model.compile(loss=self.loss, optimizer=self.optimizer, metrics=['accuracy']) # train the model with fixed number of epoches

  • model.fit(x=trainX, y=trainY, nb_epoch=self.nb_epoch, batch_size=self.batch_size, validation_data=(testX, testY)) # store model to json file

  • model_json = model.to_json() with open(model_path, "w") as json_file:

  • json_file.write(model_json) # store model weights to hdf5 file

  • if model_weight_path: if os.path.exists(model_weight_path):

  • os.remove(model_weight_path)

  • model.save_weights(model_weight_path) # eg: model_weight.h5

  • return model

  • 這里寫的只涉及LSTM網路的結構搭建,至於如何把數據處理規范化成網路所需的結構以及把模型預測結果與實際值比較統計的可視化,就需要根據實際情況做調整了。