當前位置:首頁 » 行情解析 » MATLAB股票聚類分析
擴展閱讀
遠大中國股票上市 2024-11-26 23:15:40
今天股票停止交易嗎 2024-11-26 22:54:43
美股中國股票破產 2024-11-26 22:07:20

MATLAB股票聚類分析

發布時間: 2023-01-30 02:04:37

『壹』 怎樣用matlab作聚類分析啊求操作T_T T_T

展示如何使用MATLAB進行聚類分析
分別運用分層聚類、K均值聚類以及高斯混合模型來進行分析,然後比較三者的結果
生成隨機二維分布圖形,三個中心
% 使用高斯分布(正態分布)
% 隨機生成3個中心以及標准差
s = rng(5,'v5normal');
mu = round((rand(3,2)-0.5)*19)+1;
sigma = round(rand(3,2)*40)/10+1;
X = [mvnrnd(mu(1,:),sigma(1,:),200); ...
mvnrnd(mu(2,:),sigma(2,:),300); ...
mvnrnd(mu(3,:),sigma(3,:),400)];
% 作圖
P1 = figure;clf;
scatter(X(:,1),X(:,2),10,'ro');
title('研究樣本散點分布圖')

K均值聚類
% 距離用傳統歐式距離,分成兩類
[cidx2,cmeans2,sumd2,D2] = kmeans(X,2,'dist','sqEuclidean');
P2 = figure;clf;
[silh2,h2] = silhouette(X,cidx2,'sqeuclidean');
從輪廓圖上面看,第二類結果比較好,但是第一類有部分數據表現不佳。有相當部分的點落在0.8以下。

分層聚類

eucD = pdist(X,'euclidean');
clustTreeEuc = linkage(eucD,'average');
cophenet(clustTreeEuc,eucD);
P3 = figure;clf;
[h,nodes] = dendrogram(clustTreeEuc,20);
set(gca,'TickDir','out','TickLength',[.002 0],'XTickLabel',[]);

可以選擇dendrogram顯示的結點數目,這里選擇20 。結果顯示可能可以分成三類

重新調用K均值法
改為分成三類
[cidx3,cmeans3,sumd3,D3] = kmeans(X,3,'dist','sqEuclidean');
P4 = figure;clf;
[silh3,h3] = silhouette(X,cidx3,'sqeuclidean');

圖上看,比前面的結果略有改善。

將分類的結果展示出來
P5 = figure;clf
ptsymb = {'bo','ro','go',',mo','c+'};
MarkFace = {[0 0 1],[.8 0 0],[0 .5 0]};
hold on
for i =1:3
clust = find(cidx3 == i);
plot(X(clust,1),X(clust,2),ptsymb{i},'MarkerSize',3,'MarkerFace',MarkFace{i},'MarkerEdgeColor','black');
plot(cmeans3(i,1),cmeans3(i,2),ptsymb{i},'MarkerSize',10,'MarkerFace',MarkFace{i});
end
hold off

運用高斯混合分布模型進行聚類分析
分別用分布圖、熱能圖和概率圖展示結果 等高線

% 等高線
options = statset('Display','off');
gm = gmdistribution.fit(X,3,'Options',options);
P6 = figure;clf
scatter(X(:,1),X(:,2),10,'ro');
hold on
ezcontour(@(x,y) pdf(gm,[x,y]),[-15 15],[-15 10]);
hold off
P7 = figure;clf
scatter(X(:,1),X(:,2),10,'ro');
hold on
ezsurf(@(x,y) pdf(gm,[x,y]),[-15 15],[-15 10]);
hold off
view(33,24)

熱能圖
cluster1 = (cidx3 == 1);
cluster3 = (cidx3 == 2);
% 通過觀察,K均值方法的第二類是gm的第三類
cluster2 = (cidx3 == 3);
% 計算分類概率
P = posterior(gm,X);
P8 = figure;clf
plot3(X(cluster1,1),X(cluster1,2),P(cluster1,1),'r.')
grid on;hold on
plot3(X(cluster2,1),X(cluster2,2),P(cluster2,2),'bo')
plot3(X(cluster3,1),X(cluster3,2),P(cluster3,3),'g*')
legend('第 1 類','第 2 類','第 3 類','Location','NW')
clrmap = jet(80); colormap(clrmap(9:72,:))
ylabel(colorbar,'Component 1 Posterior Probability')
view(-45,20);
% 第三類點部分概率值較低,可能需要其他數據來進行分析。

% 概率圖
P9 = figure;clf
[~,order] = sort(P(:,1));
plot(1:size(X,1),P(order,1),'r-',1:size(X,1),P(order,2),'b-',1:size(X,1),P(order,3),'y-');
legend({'Cluster 1 Score' 'Cluster 2 Score' 'Cluster 3 Score'},'location','NW');
ylabel('Cluster Membership Score');
xlabel('Point Ranking');

通過AIC准則尋找最優的分類數
高斯混合模型法的最大好處是給出分類好壞的標准
AIC = zeros(1,4);
NlogL = AIC;
GM = cell(1,4);
for k = 1:4
GM{k} = gmdistribution.fit(X,k);
AIC(k)= GM{k}.AIC;
NlogL(k) = GM{k}.NlogL;
end
[minAIC,numComponents] = min(AIC);
按AIC准則給出的最優分類數為: 3 對應的AIC值為: 8647.63

後記
(1)pluskid指出K均值演算法的初值對結果很重要,但是在運行時還沒有發現類似的結果。也許Mathworks對該演算法進行過優化。有時間會仔細研究下代碼,將結果放上來。
分享:

56
喜歡
4
贈金筆
閱讀(21209)┊ 評論 (4)┊ 收藏(1) ┊轉載原文 ┊ 喜歡▼ ┊列印┊舉報

前一篇:[轉載]拉普拉斯矩陣
後一篇:[轉載]用matlab做聚類分析

『貳』 求matlab聚類分析的代碼

%%k均值聚類的示例代碼:

X = [randn(100,2)+ones(100,2);...
randn(100,2)-ones(100,2)];
opts = statset('Display','final');

[idx,ctrs] = kmeans(X,2,...
'Distance','city',...
'Replicates',5,...
'Options',opts);
%5 iterations, total sum of distances = 284.671
%4 iterations, total sum of distances = 284.671
%4 iterations, total sum of distances = 284.671
%3 iterations, total sum of distances = 284.671
%3 iterations, total sum of distances = 284.671

plot(X(idx==1,1),X(idx==1,2),'r.','MarkerSize',12)
hold on
plot(X(idx==2,1),X(idx==2,2),'b.','MarkerSize',12)
plot(ctrs(:,1),ctrs(:,2),'kx',...
'MarkerSize',12,'LineWidth',2)
plot(ctrs(:,1),ctrs(:,2),'ko',...
'MarkerSize',12,'LineWidth',2)
legend('Cluster 1','Cluster 2','Centroids',...
'Location','NW')

你可以help下cluster,matlab裡面還自帶很多這種例子

『叄』 如何用MATLAB對股票數據做聚類分析

直接調kmeans函數。
k = 3;%類別數
idx = kmeans(X, k);%idx就是每個樣本點的標號。