A. 現在有沒有股票量化交易的呀有軟體推薦嗎
有很多啊,你可以去看看米狗量化。可以做經典模型的量化,策略量化等。
B. 如何建立一個股票量化交易模型並模擬
用python:金融想法->數據處理->模型回測->模擬交易->業績歸因->模型修正。
量化交易是指以先進的數學模型替代人為的主觀判斷,利用計算機技術從龐大的歷史數據中海選能帶來超額收益的多種「大概率」事件以制定策略,極大地減少了投資者情緒波動的影響,避免在市場極度狂熱或悲觀的情況下作出非理性的投資決策。
量化交易具有以下幾個方面的特點:
1、紀律性。根據模型的運行結果進行決策,而不是憑感覺。紀律性既可以剋制人性中貪婪、恐懼和僥幸心理等弱點,也可以克服認知偏差,且可跟蹤。
2、系統性。具體表現為「三多」。一是多層次,包括在大類資產配置、行業選擇、精選具體資產三個層次上都有模型;二是多角度,定量投資的核心思想包括宏觀周期、市場結構、估值、成長、盈利質量、分析師盈利預測、市場情緒等多個角度;三是多數據,即對海量數據的處理。
3、套利思想。定量投資通過全面、系統性的掃描捕捉錯誤定價、錯誤估值帶來的機會,從而發現估值窪地,並通過買入低估資產、賣出高估資產而獲利。
4、概率取勝。一是定量投資不斷從歷史數據中挖掘有望重復的規律並加以利用;二是依靠組合資產取勝,而不是單個資產取勝。
C. 量化交易主要有哪些經典的策略
量化選股之多因子選股模型
量化擇時--雙均線(MA)、DMA、TRIX、MACD擇時
量化擇時--PE擇時
還有趨勢型,網格型,剝頭皮,概率法則,高頻交易,神經網路,基因演算法
D. 求一篇股票分析的論文,任選一隻股票,從基本面和技術面分析,中期和短期走勢分析時間2019年1月2號
我不相信什麼技術面,基本面,中國股票多少是帶假面具?
E. 量化分析方法有幾種
量化分析法是對通過定性風險分析排出優先順序的風險進行量化分析。盡管有經驗的風險經理有時在風險識別之後直接進行定量分析,但定量風險分析一般在定性風險分析之後進行。定量風險分析一般應當在確定風險應對計劃時再次進行,以確定項目總風險是否已經減少到滿意。重復進行定量風險分析反映出來的趨勢可以指出需要增加還是減少風險管理措施,它是風險應對計劃的一項依據,並作為風險監測和控制的組成部分。
(一)技術分析法
技術分析法的主要目標是通過對市場的歷史數據的研究,特別是對價格和交易量的研究,來預測價格的變動方向。技術分析法通常分析市場價格圖標,因此技術分析師被稱為「圖表分析專家」。目的在於識別價格模式和市場趨勢,從而試圖預測未來的變化趨勢。技術分析法的原理包括市場行為包容一切信息(技術分析法旨在弄明白投資者對於此類信息的反應),價格以趨勢方式演變,歷史價格趨於重演,並且投資者具有重蹈先前投資者覆轍的特徵。
(二)基本面分析法
基本面分析法重點分析經濟狀態、利率、通貨膨脹、公司收益、公司資產負債表、以及中央銀行和政府的相關政策。
當基本面分析法應用於選股時,通常會結合對經濟整體方向自上而下的分析(宏觀),從而形成對於市場、行業、利率水平以及匯率水平的觀點,並加之運用自下而上的方法對於某隻股票進行分析(微觀)。自下而上的分析往往會忽略在國別以及產業方面的整體配置而關注於單只股票的選擇。根據投資理念和投資過程,自上而下的分析決定了國別和行業的配置;同時,自下而上的分析則決定了某一國家和行業內部的投資配置。
(三)量化分析法
量化(定量)分析法,正如其名,包括運用量化方法、統計模型、數學公式以及演算法來預測市場走向。在戰術型資產配置中一個常見的方法便是使用多因子模型,通過分析估值、動量指標、風險水平、市場情緒、利率、收益率曲線等因素,從而推導出涵蓋股票、債券和外匯市場等不同市場的買入和賣出信號。雖然有一部分戰術型資產配置策略完全是量化模型驅動的,但將量化分析和基本面分析相結合將更具活力,因為這種結合可以將量化信號融合入基本面分析的過程中。
量化分析的不足在於該分析很大程度上是以觀測到的市場價格的歷史關聯性和走勢為基礎。如果上述關聯性和走勢由於市場反轉或市場承壓而引起歷史關聯性發生變化而失效,那麼量化模型可能會在預測拐點過程中失效。量化模型往往也會在出現政權更替或市場結構化改變時失效。
F. 機器學習怎樣應用於量化交易
機器學習怎樣應用於量化交易(一)
曾有朋友問過,國內現在量化領域機器學習應用的少,是否因為效果不如簡單的策略。其實,把機器學習應用在量化交易上始終面臨著兩難,卻並不是無解的兩難。很多時候並不是機器學習不work,而是真正懂如何用正確科學的統計思維使用Machine Learning的人才太少。
機器學習涉及到特徵選擇、特徵工程、模型選擇、數據預處理、結果的驗證和分析等一整套建模流程,廣義角度來說就不單單是模型選擇的問題。所以,如果認為「用支持向量機成功預測股票漲跌」 這樣的研究,就是把機器學習應用於量化交易,這種狹義的認識無疑是買櫝還珠,對機器學習領域散落遍地的珍珠視而不見。如果把機器學習的崛起放在歷史進程中考量,無非就是趨勢的延續:現在,可通過系統的數據分析證實過去模糊不定的經驗,機器學習演算法將未曾被察覺的規律得以浮現紙面。
在我看來,未來的發展概有兩個方向:
1.針對量化交易的統計學習演算法被提出,使其適合於雜訊大,分布不穩定的金融數據分析;
2.對於機器學習的熱情回歸理性,從工具為導向回歸到問題為導向。
針對如何以問題為導向,在機器學習演算法中挑選合適的工具,分享一些思路。
1.多因子模型的因子權重計算
當我們在構建多因子模型且已經選定了一系列因子之後,要如何根據不同的市場情況調整各個因子的權重呢?在以往的研究中發現,與其它演算法相比較,隨機森林演算法對於存在非線性、噪音和自變數共線性的訓練集的分析結果更出色。所以,目前在多因子模型的權重上,採用當期收益率對上期因子進行隨機森林回歸分析,以確定下一期多因子模型的因子權重。
2.缺失值處理
處理缺失值在金融的量化分析中是個無可避免的問題。選取合理的缺失值處理方法,依賴於數據本身的特點、數據缺失的情況、其對應的經濟學意義,以及我們需要使用數據進行何種計算。在嘗試構建多因子模型時,我們選擇了兩種缺失值替換方法:(1)採用期望最大化演算法來用同一變數的已知數據對缺失值進行極大似然估計。(2)把模型中包含的所有因子作為特徵變數,並賦予其相同的權重,再採用機器學習中的K-近鄰演算法來尋找最相似的標的,保證缺失值替換後,不會強化一部分因子的影響力。
其實在量化領域,機器學習解決著線性模型天生的缺陷或弊端,所以還是有著很深的介入的。除去凸優化、降維(提取市場特徵)等領域的應用,目前「非動態性」和「非線性」是兩個重要的弊端。金融關系之間並非靜態,很多時候也不是線性的。統計學習的優勢此時就會體現出來,它們能夠迅速地適應市場,或者用一種更「准確的」方式來描述市場。
在國內,機器學習在量化內應用跟領域有很大的關系,跟頻率也有很大的關系。比如,CTA的運用可能就要多於股票,它處理數據的維度要遠小於股票,獲取市場的長度和動態又強於股票。股票市場的momentum要弱於期貨市場的momentum,它的趨勢與股票相比更明顯和低雜訊。這些特徵對於機器學習發揮作用都更加有利。
很可能國內一些交易執行演算法的設計上就借鑒了機器學習。我們可以通過學習訂單薄特徵,對下一期盤口變化做一些概率上的預測,經過一定樣本的訓練之後,可以顯著地提升演算法表現。
而我仍謹慎看好深度學習等機器學習方法的原因在於,在認識市場上,現行的大部分方法與這些方法並不在一個維度上,這個優勢讓它們與其他方法相比,捕捉到更多的收益。也就是說,一個新的認識市場的角度才能帶來alpha。
G. 和訊股票機構靠譜嗎自帶的智能診股,准確率高嗎
機構薦股都是套路,短線有一定準確率但周期非常短,一旦貪心立馬套在高位
H. 深圳鼎益豐是個什麼樣的公司靠譜嗎
我國經濟形勢現如今可謂是突飛猛進,相信很多朋友在現實生活中會看到各種各樣的公司,很多朋友,特別是當談到這些公司和自己的利益綁在一起的時候,很想知道它們到底是什麼公司,深圳鼎益豐公司很多金融朋友都是非常熟悉的,下面小編將帶領大家了解一下這家公司是怎樣的,以及這家公司在做什麼。
鼎益豐的核心理念是:“股市場不是為投資者炒股,而是為投資者提供一個投資工具。鼎益豐以量化為核心,以投資者為中心的理念,以客戶為中心,打造以客戶為中心的專業研究團隊。這種基於歷史數據和量化研究成果的研究,具有極強的針對性。 因此是比較靠譜的。