㈠ 如何分析股票的籌碼
股市中籌碼指的是在市場中可供交易的流通股。主力要炒作一支股票就必須在低位買入股票(這叫吸籌)直到買入足量的股票(這叫控籌)。 持股人數減少,而人均持股數量增加,就意味著籌碼集中。 通常在他們的基本資料中會有這樣的介紹,不過那也是通過一定的方法計算出來的,不一定能夠准確的反應市場真實的情況。通常情況下籌碼集中,但估計漲幅不大的股票有一定的投資值,籌碼集中但股價很高就要注意投資風險。股價在底部的股票籌碼如果分散,說明少有人問津。 籌碼分析即成本分析.基於流通盤是固定的.無論流通籌碼在盤中這樣分布.累計量必然等於總流通盤. 可以說在也沒有什麼指標能象籌碼分布這樣能把主力的一切行為表達的如此清晰了!操作中的使用價值主要表現在以下幾個方面. 1.能有效的識別主力建倉和派發的全過程.象放電影一樣把主力的一舉一動展現在大家面前. 2.能有效的判斷該股票的行情性質和行情趨勢.在不理解一隻股票的籌碼分布之前就說主力怎麼怎麼了.什麼主力在洗盤了.什麼在吸籌了.都是很無根據的. 3.能提供有效的支撐和阻力位. 總的來說.籌碼分布是尋找中長線牛股的利器.對斷弦線客可能沒有太大的幫助.但籌碼分布在股市的運用將開辟技術分析一片新天地! 每個月的月末都要把兩市的股票籌碼圖翻一遍.以便及時發現一隻底部籌碼集中的股票.這種股票並不是天天有的.有的需要幾個月.一年.幾年.一旦發現漲幅將是驚人的! 一輪行情主要由三個階段構成:吸籌階段、拉升階段和派發階段。吸籌階段的主要任務是在低位大量買進股票。吸籌是否充分,莊家持倉量的多少對其做盤有著極為重要的意義:其一,持倉量決定了其利潤量,籌碼越多,利潤實現量越大;其二,持倉量決定了其控盤程度,吸籌籌碼越多,市場籌碼越少,莊家對股票的控制能力越強。同時,在吸籌階段也常伴隨著洗盤過程,迫使跟風客出局和上一輪行情高位套牢者不斷的割肉,莊家才能在低位吸籌承接。其實,莊家吸籌的過程就是一個籌碼換手的過程,在這個過程中,莊家為買方,股民為賣方。只有在低位充分完成了籌碼換手,吸籌階段才會結束,發動上攻行情的條件才趨於成熟。莊家的吸籌區域就是其持有股票的成本區域。拉升階段的主要任務就是使股價脫離莊家吸籌成本區,打開利潤空間。在此過程中,莊家用部分籌碼打壓做盤,同時又承接拋壓籌碼,但其大部分籌碼仍舊按兵不動的鎖定在吸籌區域,等待拉高獲利賣出。在拉升過程中,部分股民紛紛追漲,同時部分股民獲利吐出。對於坐莊技巧較好的莊家,如有大勢配合,莊家只需要點上一把火,拉升工作主要是由股民自行完成的,其間,莊家主要利用控盤能力調控拉升節奏。在拉升階段,成交異常活躍,籌碼加速轉手,各價位的成本分布大小不一。(文章由捜股中國整理收藏)派發階段的主要任務是賣出持倉籌碼,實現坐莊利潤。股價經過拉升脫離成本區達到莊家的盈利區域,莊家高位出貨的可能性不斷的增大。隨著高位換手的充分,拉升前的低位籌碼被上移至高位。而當低位籌碼搬家工作完成之時,莊家出貨工作也宣告完成,一輪下跌行情也隨之降臨。在一輪行情的流程中要充分重視兩個概念:低位充分換手和高位充分換手。低位充分換手是吸籌階段完成的標志;高位充分換手是派發階段完成的標志。它們是拉升和派發的充分必要條件。所謂充分換手就是在一定的價格區域成交高度密集,使分散在各價位上的籌碼充分集中在一個主要的價格區域。股價走勢循環周期的四個階段: A階段:無窮成本均線由向下到走平;俗稱築底階段; B階段:無窮成本均線由走平到向上;俗稱拉升階段,可稱為上升階段; C階段:無窮成本均線由向上到走平;俗稱作頭(頂)階段; D階段:無窮成本均線由走平到向下;俗稱派發階段,可稱作下降階段; 對應籌碼分布的特徵: A階段:籌碼由分散到集中,發散度下降。 B階段:籌碼由集中到分散,發散度上升。 C階段:籌碼由分散到集中,發散度下降。 D階段:籌碼由集中到分散,發散度上升。 股市裡的終極真理:供給大於需求價格下跌,需求大於供給價格上漲。 而供求又最終對應於資金和籌碼。至於其它什麼基本面、消息、信心、技術等等,都只是間接地影響或反映股市的這一本質。股價運動的本質等於成交量背後的籌碼運動狀態。 籌碼 供求力量的兩方:資金和籌碼. 在股市裡的意義是明顯不同的。對於資金,傾向於有行情就有資金這種說法。也就是說,有行情才是關鍵,這是中國股市中長期走勢的主線。籌碼,則是股市利益主體博弈的媒介,抓住了籌碼這一關鍵,才有可能從本質上把握住股票的價格走勢。因此,從博弈角度看,籌碼,才是股市博弈的核心。 籌碼論其實是一種還原:將所有的影響股市裡供求的因素,全部還原成籌碼,以及籌碼背後所反映的力量、利益、爭奪、控制集中、分散、轉移、等等。所以我認為股市研究的核心應該是市場成本! 在熊市中現金為主,而在牛市中籌碼的為王,股票獲利無非是將手中的現金在低位轉化成股票,再將股票在高位兌換為現金的過程,這是從另一角度上看,就是籌碼的運動,主流資金就是籌碼的搬運工,而籌碼的成本就是關鍵,成本分析將成為技術分析中非常重要的一個分支。 主要功能與目的 1.判斷成交密集區的籌碼分布和變化。 2.判斷行情發展中的重要阻力位與支撐位。 3.通過分析市場的變化,制定相應的操作策略。 籌碼是股票博弈的核心,在牛市中籌碼為王就是這個道理,誰掌握更多的籌碼誰就將在未來的博弈中爭取到主動權,談到籌碼應從以下幾方面進行研究 一、籌碼的成本 這是籌碼的核心問題,市場中主流資金或絕大部分的籌碼的成本對股票的走勢起決定性作用,這里引入成本均線的概念,主要是反映市場的平均持籌成本的成本均線。 平均移動線與成本均線的區別。成本均線在計算中考慮了成交量的作用,並用神經網路方法解決了在計算時間內短線客反復買賣的問題,可以真實的反應最後的持股人的成本。5日、13日、34日成本均線分別代表5日、13日、34日的市場平均建倉成本。如某日13日成本均線為10.2元,表示13日以來買入該只股票的人平均成本為10.2元。無限長的成本均線則表示市場上所有的股票的平均建倉成本。 無窮成本平均線是最重要的成本均線。是市場牛熊的重要分水嶺,就象價值曲線一樣,股票價格始終圍繞起上下一波動,這里又引出另一個概念,無窮成本均線的乘離率,也叫盈虧指標。 該指標反映投資者平均持色的盈虧,5.13日盈虧對短線操作有重大意義,而引物尤其是無窮BIAS才對中長期判斷有決定性作用,這個指標在投資方案和思路中佔有重要的地位,比如。什麼叫超跌?跌倒什麼份上差不多了?為什麼有的股票跌連跌7.8個跌停仍不超跌?盈虧指標較好地解決了這些問題。 二、籌碼分布的形態:密集與分散 籌碼分布的運動:集中與發散 成交密集的區域,形成籌碼峰,兩峰之間的區域則形成谷,這是籌碼分布的視覺形態,籌碼的運動伴隨籌碼的集中與發散。必然伴隨著籌碼密集而形成峰。密集分為高位密集和低位密集。 任何一輪行情都將經歷由低位換手到高位換手,再由高位換手到低位換手,籌碼的運動過程是實現利潤的過程。(當然也是割肉虧損的過程) 低位充分換手是完成吸籌階段的標志,高位充分換手是派發階段完成的標志。 成本密集是下一個階段行情的准備過程,成本發散是行情的展開過程。 三、集中度 表明主要籌碼堆積的主要區域的幅度,數值越大表示籌碼集中的幅度越大,籌碼就越分散,需要特別提醒的是,這個集中的意思,不等同於莊家控盤,與龍虎榜數據完全不是一個意思。 就目前而言,無法將其編成方案,只能通過一隻一隻股票的觀察進行總結,得出的以下結果。 1。籌碼集中度高的股票(10以下)的爆發力強,上漲或下跌的幅度比較大。 2.籌碼集中度低的股票(尤其是20以上)的上漲力度明顯減弱。 3.籌碼的集中過程是下一階段行情的准備過程,而發散過程是行情的展開過程。 需要強調: 1.不是只有集中,股票才會上漲。 2.達到集中,上漲的幅度增大。 3.不集中的股票,也會上漲。 四、活躍籌碼 籌碼分布能讓我們看出別人持股成本的分布情況,是我們做成本分析時很有效的工具。我們仔細觀察籌碼分布的變化情況時,發現在股價附近的籌碼是最不穩定的,也是最容易參與交易的,因為在股價附近的股票持有者,最經受不住誘惑,盈利的想趕快把浮動盈利換成實際盈利;被套的想趁著虧損得還少趕快賣掉,利用資金買另外的股票,把虧損趕快掙回來。而遠離股價,在下方的籌碼,由於有了一定的利潤,持股信心會增強;在上方的籌碼,由於被套太深而不願割肉,所以在股價附近的籌碼是最活躍的,而在股價上下,遠離股價的籌碼是不太活躍的。 活躍籌碼就是反映股價附近的籌碼占所有流通籌碼的百分比。它的取值范圍是從0到100,數值越大表示股價附近的活躍籌碼越多,數值越小表示股價附近的活躍籌碼越少。 活躍籌碼的多少還可用來描述籌碼的密集程度,如今天的活躍籌碼的值是50,則表示在股價附近的籌碼呈密集狀態。如今天的活躍籌碼的值是10,則表示在股價附近的籌碼很少,大多數籌碼都在遠離股價的地方,獲利很多,或者虧損很多。 活躍籌碼的數值很小時是很值得注意的一種情況。(文章由捜股中國整理收藏)比如,一隻股票經過漫長的下跌後,活躍籌碼的值很小(小於10),大部分籌碼都處於被套較深的狀態,這時多數持股者已經不願意割肉出局了,所以這時候往往能成為一個較好的買入點;再比如:一隻股票經過一段時間的上漲,活躍籌碼很小(小於10),大部分籌碼都處於獲利較多的狀態,如果這時控盤強弱的值較大(大於20),前期有明顯的庄股特徵,總體漲幅不太大,也能成為一個較好的買入點。所以,在股價運行到不同的階段時,考慮一下活躍籌碼的多少,能起到很好的輔助效果。 詳細信息 http://user.qzone.qq.com/3767808/blog/1340160923
㈡ A Matlab神經元網路分析學的快嗎
可以學得快,
如果你只想用C#或Matlab快速實現神經網路來解決你手頭上的問題,或者已經了解神經網路基本原理,請直接跳到第二節神經網路實現。
㈢ 什麼是BP神經網路
BP演算法的基本思想是:學習過程由信號正向傳播與誤差的反向回傳兩個部分組成;正向傳播時,輸入樣本從輸入層傳入,經各隱層依次逐層處理,傳向輸出層,若輸出層輸出與期望不符,則將誤差作為調整信號逐層反向回傳,對神經元之間的連接權矩陣做出處理,使誤差減小。經反復學習,最終使誤差減小到可接受的范圍。具體步驟如下:
1、從訓練集中取出某一樣本,把信息輸入網路中。
2、通過各節點間的連接情況正向逐層處理後,得到神經網路的實際輸出。
3、計算網路實際輸出與期望輸出的誤差。
4、將誤差逐層反向回傳至之前各層,並按一定原則將誤差信號載入到連接權值上,使整個神經網路的連接權值向誤差減小的方向轉化。
5、対訓練集中每一個輸入—輸出樣本對重復以上步驟,直到整個訓練樣本集的誤差減小到符合要求為止。
㈣ 誰能教我Matlab 神經網路分析
自學的話,從基本學起,可以看看下面這本書,看完基本的神經網路都熟悉了。
人工神經網路(Artificial Neural Network,即ANN ),是20世紀80 年代以來人工智慧領域興起的研究熱點。它從信息處理角度對人腦神經元網路進行抽象, 建立某種簡單模型,按不同的連接方式組成不同的網路。在工程與學術界也常直接簡稱為神經網路或類神經網路。神經網路是一種運算模型,由大量的節點(或稱神經元)之間相互聯接構成。每個節點代表一種特定的輸出函數,稱為激勵函數(activation function)。每兩個節點間的連接都代表一個對於通過該連接信號的加權值,稱之為權重,這相當於人工神經網路的記憶。網路的輸出則依網路的連接方式,權重值和激勵函數的不同而不同。而網路自身通常都是對自然界某種演算法或者函數的逼近,也可能是對一種邏輯策略的表達。
㈤ 神經網路的主要內容特點
(1) 神經網路的一般特點
作為一種正在興起的新型技術神經網路有著自己的優勢,他的主要特點如下:
① 由於神經網路模仿人的大腦,採用自適應演算法。使它較之專家系統的固定的推理方式及傳統計算機的指令程序方式更能夠適應化環境的變化。總結規律,完成某種運算、推理、識別及控制任務。因而它具有更高的智能水平,更接近人的大腦。
② 較強的容錯能力,使神經網路能夠和人工視覺系統一樣,根據對象的主要特徵去識別對象。
③ 自學習、自組織功能及歸納能力。
以上三個特點是神經網路能夠對不確定的、非結構化的信息及圖像進行識別處理。石油勘探中的大量信息就具有這種性質。因而,人工神經網路是十分適合石油勘探的信息處理的。
(2) 自組織神經網路的特點
自組織特徵映射神經網路作為神經網路的一種,既有神經網路的通用的上面所述的三個主要的特點又有自己的特色。
① 自組織神經網路共分兩層即輸入層和輸出層。
② 採用競爭學記機制,勝者為王,但是同時近鄰也享有特權,可以跟著競爭獲勝的神經元一起調整權值,從而使得結果更加光滑,不想前面的那樣粗糙。
③ 這一網路同時考慮拓撲結構的問題,即他不僅僅是對輸入數據本身的分析,更考慮到數據的拓撲機構。
權值調整的過程中和最後的結果輸出都考慮了這些,使得相似的神經元在相鄰的位置,從而實現了與人腦類似的大腦分區響應處理不同類型的信號的功能。
④ 採用無導師學記機制,不需要教師信號,直接進行分類操作,使得網路的適應性更強,應用更加的廣泛,尤其是那些對於現在的人來說結果還是未知的數據的分類。頑強的生命力使得神經網路的應用范圍大大加大。
㈥ BP神經網路的原理的BP什麼意思
人工神經網路有很多模型,但是日前應用最廣、基本思想最直觀、最容易被理解的是多層前饋神經網路及誤差逆傳播學習演算法(Error Back-Prooaeation),簡稱為BP網路。
在1986年以Rumelhart和McCelland為首的科學家出版的《Parallel Distributed Processing》一書中,完整地提出了誤差逆傳播學習演算法,並被廣泛接受。多層感知網路是一種具有三層或三層以上的階層型神經網路。典型的多層感知網路是三層、前饋的階層網路(圖4.1),即:輸入層、隱含層(也稱中間層)、輸出層,具體如下:
圖4.1 三層BP網路結構
(1)輸入層
輸入層是網路與外部交互的介面。一般輸入層只是輸入矢量的存儲層,它並不對輸入矢量作任何加工和處理。輸入層的神經元數目可以根據需要求解的問題和數據表示的方式來確定。一般而言,如果輸入矢量為圖像,則輸入層的神經元數目可以為圖像的像素數,也可以是經過處理後的圖像特徵數。
(2)隱含層
1989年,Robert Hecht Nielsno證明了對於任何在閉區間內的一個連續函數都可以用一個隱層的BP網路來逼近,因而一個三層的BP網路可以完成任意的n維到m維的映射。增加隱含層數雖然可以更進一步的降低誤差、提高精度,但是也使網路復雜化,從而增加了網路權值的訓練時間。誤差精度的提高也可以通過增加隱含層中的神經元數目來實現,其訓練效果也比增加隱含層數更容易觀察和調整,所以一般情況應優先考慮增加隱含層的神經元個數,再根據具體情況選擇合適的隱含層數。
(3)輸出層
輸出層輸出網路訓練的結果矢量,輸出矢量的維數應根據具體的應用要求來設計,在設計時,應盡可能減少系統的規模,使系統的復雜性減少。如果網路用作識別器,則識別的類別神經元接近1,而其它神經元輸出接近0。
以上三層網路的相鄰層之間的各神經元實現全連接,即下一層的每一個神經元與上一層的每個神經元都實現全連接,而且每層各神經元之間無連接,連接強度構成網路的權值矩陣W。
BP網路是以一種有教師示教的方式進行學習的。首先由教師對每一種輸入模式設定一個期望輸出值。然後對網路輸入實際的學習記憶模式,並由輸入層經中間層向輸出層傳播(稱為「模式順傳播」)。實際輸出與期望輸出的差即是誤差。按照誤差平方最小這一規則,由輸出層往中間層逐層修正連接權值,此過程稱為「誤差逆傳播」(陳正昌,2005)。所以誤差逆傳播神經網路也簡稱BP(Back Propagation)網。隨著「模式順傳播」和「誤差逆傳播」過程的交替反復進行。網路的實際輸出逐漸向各自所對應的期望輸出逼近,網路對輸入模式的響應的正確率也不斷上升。通過此學習過程,確定下各層間的連接權值後。典型三層BP神經網路學習及程序運行過程如下(標志淵,2006):
(1)首先,對各符號的形式及意義進行說明:
網路輸入向量Pk=(a1,a2,...,an);
網路目標向量Tk=(y1,y2,...,yn);
中間層單元輸入向量Sk=(s1,s2,...,sp),輸出向量Bk=(b1,b2,...,bp);
輸出層單元輸入向量Lk=(l1,l2,...,lq),輸出向量Ck=(c1,c2,...,cq);
輸入層至中間層的連接權wij,i=1,2,...,n,j=1,2,...p;
中間層至輸出層的連接權vjt,j=1,2,...,p,t=1,2,...,p;
中間層各單元的輸出閾值θj,j=1,2,...,p;
輸出層各單元的輸出閾值γj,j=1,2,...,p;
參數k=1,2,...,m。
(2)初始化。給每個連接權值wij、vjt、閾值θj與γj賦予區間(-1,1)內的隨機值。
(3)隨機選取一組輸入和目標樣本
提供給網路。
(4)用輸入樣本
、連接權wij和閾值θj計算中間層各單元的輸入sj,然後用sj通過傳遞函數計算中間層各單元的輸出bj。
基坑降水工程的環境效應與評價方法
bj=f(sj) j=1,2,...,p (4.5)
(5)利用中間層的輸出bj、連接權vjt和閾值γt計算輸出層各單元的輸出Lt,然後通過傳遞函數計算輸出層各單元的響應Ct。
基坑降水工程的環境效應與評價方法
Ct=f(Lt) t=1,2,...,q (4.7)
(6)利用網路目標向量
,網路的實際輸出Ct,計算輸出層的各單元一般化誤差
。
基坑降水工程的環境效應與評價方法
(7)利用連接權vjt、輸出層的一般化誤差dt和中間層的輸出bj計算中間層各單元的一般化誤差
。
基坑降水工程的環境效應與評價方法
(8)利用輸出層各單元的一般化誤差
與中間層各單元的輸出bj來修正連接權vjt和閾值γt。
基坑降水工程的環境效應與評價方法
(9)利用中間層各單元的一般化誤差
,輸入層各單元的輸入Pk=(a1,a2,...,an)來修正連接權wij和閾值θj。
基坑降水工程的環境效應與評價方法
(10)隨機選取下一個學習樣本向量提供給網路,返回到步驟(3),直到m個訓練樣本訓練完畢。
(11)重新從m個學習樣本中隨機選取一組輸入和目標樣本,返回步驟(3),直到網路全局誤差E小於預先設定的一個極小值,即網路收斂。如果學習次數大於預先設定的值,網路就無法收斂。
(12)學習結束。
可以看出,在以上學習步驟中,(8)、(9)步為網路誤差的「逆傳播過程」,(10)、(11)步則用於完成訓練和收斂過程。
通常,經過訓練的網路還應該進行性能測試。測試的方法就是選擇測試樣本向量,將其提供給網路,檢驗網路對其分類的正確性。測試樣本向量中應該包含今後網路應用過程中可能遇到的主要典型模式(宋大奇,2006)。這些樣本可以直接測取得到,也可以通過模擬得到,在樣本數據較少或者較難得到時,也可以通過對學習樣本加上適當的雜訊或按照一定規則插值得到。為了更好地驗證網路的泛化能力,一個良好的測試樣本集中不應該包含和學習樣本完全相同的模式(董軍,2007)。
㈦ 個人做量化交易需要注意些什麼
一說到量化投資,一下子蹦出來一堆厲害的語匯,例如:FPGA,微波加熱,高頻率,納秒等級延遲時間這些。這種全是高頻交易中的語匯,高頻交易的確是基金管理公司做起來較為適合,平常人搞起來門檻較為高。
模擬交易最後實際效果一般在於你的程序流程是不是靈便,是不是優良的風險性和資金分配優化演算法。
總結:對於說本人做量化投資是不是可靠,上邊的步驟早已表明了實際可策劃方案,可靠性顯而易見。對於能否賺到錢,就看本人的修為了更好地。
㈧ 神經網路的發展趨勢如何
神經網路的雲集成模式還不是很成熟,應該有發展潛力,但神經網路有自己的硬傷,不知道能夠達到怎樣的效果,所以決策支持系統中並不是很熱門,但是神經網路無視過程的優點也是無可替代的,雲網路如果能夠對神經網路提供一個互補的輔助決策以控制誤差的話,也許就能使神經網路成熟起來
1 人工神經網路產生的背景
自古以來,關於人類智能本源的奧秘,一直吸引著無數哲學家和自然科學家的研究熱情。生物學家、神經學家經過長期不懈的努力,通過對人腦的觀察和認識,認為人腦的智能活動離不開腦的物質基礎,包括它的實體結構和其中所發生的各種生物、化學、電學作用,並因此建立了神經元網路理論和神經系統結構理論,而神經元理論又是此後神經傳導理論和大腦功能學說的基礎。在這些理論基礎之上,科學家們認為,可以從仿製人腦神經系統的結構和功能出發,研究人類智能活動和認識現象。另一方面,19世紀之前,無論是以歐氏幾何和微積分為代表的經典數學,還是以牛頓力學為代表的經典物理學,從總體上說,這些經典科學都是線性科學。然而,客觀世界是如此的紛繁復雜,非線性情況隨處可見,人腦神經系統更是如此。復雜性和非線性是連接在一起的,因此,對非線性科學的研究也是我們認識復雜系統的關鍵。為了更好地認識客觀世界,我們必須對非線性科學進行研究。人工神經網路作為一種非線性的、與大腦智能相似的網路模型,就這樣應運而生了。所以,人工神經網路的創立不是偶然的,而是20世紀初科學技術充分發展的產物。
2 人工神經網路的發展
人工神經網路的研究始於40年代初。半個世紀以來,經歷了興起、高潮與蕭條、高潮及穩步發展的遠為曲折的道路。
1943年,心理學家W.S.Mcculloch和數理邏輯學家W.Pitts 提出了M—P模型,這是第一個用數理語言描述腦的信息處理過程的模型, 雖然神經元的功能比較弱,但它為以後的研究工作提供了依據。1949年,心理學家D.O.Hebb提出突觸聯系可變的假設,根據這一假設提出的學習規律為神經網路的學習演算法奠定了基礎。 1957 年, 計算機科學家Rosenblatt提出了著名的感知機模型,它的模型包含了現代計算機的一些原理,是第一個完整的人工神經網路,第一次把神經網路研究付諸工程實現。由於可應用於模式識別,聯想記憶等方面,當時有上百家實驗室投入此項研究,美國軍方甚至認為神經網路工程應當比「原子彈工程」更重要而給予巨額資助,並在聲納信號識別等領域取得一定成績。1960年,B.Windrow和E.Hoff提出了自適應線性單元, 它可用於自適應濾波、預測和模式識別。至此,人工神經網路的研究工作進入了第一個高潮。
1969年,美國著名人工智慧學者M.Minsky和S.Papert編寫了影響很大的Perceptron一書,從理論上證明單層感知機的能力有限,諸如不能解決異或問題,而且他們推測多層網路的感知機能力也不過如此,他們的分析恰似一瓢冷水,很多學者感到前途渺茫而紛紛改行,原先參與研究的實驗室紛紛退出,在這之後近10年,神經網路研究進入了一個緩慢發展的蕭條期。這期間,芬蘭學者T.Kohonen 提出了自組織映射理論,反映了大腦神經細胞的自組織特性、記憶方式以及神經細胞興奮刺激的規律;美國學者S.A.Grossberg的自適應共振理論(ART );日本學者K.Fukushima提出了認知機模型;ShunIchimari則致力於神經網路有關數學理論的研究等,這些研究成果對以後的神經網路的發展產生了重要影響。
美國生物物理學家J.J.Hopfield於1982年、1984年在美國科學院院刊發表的兩篇文章,有力地推動了神經網路的研究,引起了研究神經網路的又一次熱潮。 1982 年, 他提出了一個新的神經網路模型——hopfield網路模型。他在這種網路模型的研究中,首次引入了網路能量函數的概念,並給出了網路穩定性的判定依據。1984年,他又提出了網路模型實現的電子電路,為神經網路的工程實現指明了方向,他的研究成果開拓了神經網路用於聯想記憶的優化計算的新途徑,並為神經計算機研究奠定了基礎。1984年Hinton等人將模擬退火演算法引入到神經網路中,提出了Boltzmann機網路模型,BM 網路演算法為神經網路優化計算提供了一個有效的方法。1986年,D.E.Rumelhart和J.LMcclelland提出了誤差反向傳播演算法,成為至今為止影響很大的一種網路學習方法。1987年美國神經計算機專家R.Hecht—Nielsen提出了對向傳播神經網路,該網路具有分類靈活,演算法簡練的優點,可用於模式分類、函數逼近、統計分析和數據壓縮等領域。1988年L.Ochua 等人提出了細胞神經網路模型,它在視覺初級加工上得到了廣泛應用。
為適應人工神經網路的發展,1987年成立了國際神經網路學會,並決定定期召開國際神經網路學術會議。1988年1月Neural Network 創刊。1990年3月IEEE Transaction on Neural Network問世。 我國於1990年12月在北京召開了首屆神經網路學術大會,並決定以後每年召開一次。1991 年在南京成立了中國神經網路學會。 IEEE 與INNS 聯合召開的IJCNN92已在北京召開。 這些為神經網路的研究和發展起了推波助瀾的作用,人工神經網路步入了穩步發展的時期。
90年代初,諾貝爾獎獲得者Edelman提出了Darwinism模型,建立了神經網路系統理論。同年,Aihara等在前人推導和實驗的基礎上,給出了一個混沌神經元模型,該模型已成為一種經典的混沌神經網路模型,該模型可用於聯想記憶。 Wunsch 在90OSA 年會上提出了一種AnnualMeeting,用光電執行ART,學習過程有自適應濾波和推理功能,具有快速和穩定的學習特點。1991年,Hertz探討了神經計算理論, 對神經網路的計算復雜性分析具有重要意義;Inoue 等提出用耦合的混沌振盪子作為某個神經元,構造混沌神經網路模型,為它的廣泛應用前景指明了道路。1992年,Holland用模擬生物進化的方式提出了遺傳演算法, 用來求解復雜優化問題。1993年方建安等採用遺傳演算法學習,研究神經網路控制器獲得了一些結果。1994年Angeline等在前人進化策略理論的基礎上,提出一種進化演算法來建立反饋神經網路,成功地應用到模式識別,自動控制等方面;廖曉昕對細胞神經網路建立了新的數學理論和方法,得到了一系列結果。HayashlY根據動物大腦中出現的振盪現象,提出了振盪神經網路。1995年Mitra把人工神經網路與模糊邏輯理論、 生物細胞學說以及概率論相結合提出了模糊神經網路,使得神經網路的研究取得了突破性進展。Jenkins等人研究光學神經網路, 建立了光學二維並行互連與電子學混合的光學神經網路,它能避免網路陷入局部最小值,並最後可達到或接近最理想的解;SoleRV等提出流體神經網路,用來研究昆蟲社會,機器人集體免疫系統,啟發人們用混沌理論分析社會大系統。1996年,ShuaiJW』等模擬人腦的自發展行為, 在討論混沌神經網路的基礎上提出了自發展神經網路。1997、1998年董聰等創立和完善了廣義遺傳演算法,解決了多層前向網路的最簡拓樸構造問題和全局最優逼近問題。
隨著理論工作的發展,神經網路的應用研究也取得了突破性進展,涉及面非常廣泛,就應用的技術領域而言有計算機視覺,語言的識別、理解與合成,優化計算,智能控制及復雜系統分析,模式識別,神經計算機研製,知識推理專家系統與人工智慧。涉及的學科有神經生理學、認識科學、數理科學、心理學、信息科學、計算機科學、微電子學、光學、動力學、生物電子學等。美國、日本等國在神經網路計算機軟硬體實現的開發方面也取得了顯著的成績,並逐步形成產品。在美國,神經計算機產業已獲得軍方的強有力支持,國防部高級研究計劃局認為「神經網路是解決機器智能的唯一希望」,僅一項8 年神經計算機計劃就投資4億美元。在歐洲共同體的ESPRIT計劃中, 就有一項特別項目:「神經網路在歐洲工業中的應用」,單是生產神經網路專用晶元這一項就投資2200萬美元。據美國資料聲稱,日本在神經網路研究上的投資大約是美國的4倍。我國也不甘落後,自從1990 年批准了南開大學的光學神經計算機等3項課題以來, 國家自然科學基金與國防預研基金也都為神經網路的研究提供資助。另外,許多國際著名公司也紛紛捲入對神經網路的研究,如Intel、IBM、Siemens、HNC。神經計算機產品開始走向商用階段,被國防、企業和科研部門選用。在舉世矚目的海灣戰爭中,美國空軍採用了神經網路來進行決策與控制。在這種刺激和需求下,人工神經網路定會取得新的突破,迎來又一個高潮。自1958年第一個神經網路誕生以來,其理論與應用成果不勝枚舉。人工神經網路是一個快速發展著的一門新興學科,新的模型、新的理論、新的應用成果正在層出不窮地涌現出來。
3 人工神經網路的發展前景
針對神經網路存在的問題和社會需求,今後發展的主要方向可分為理論研究和應用研究兩個方面。
(1)利用神經生理與認識科學研究大腦思維及智能的機理、 計算理論,帶著問題研究理論。
人工神經網路提供了一種揭示智能和了解人腦工作方式的合理途徑,但是由於人類起初對神經系統了解非常有限,對於自身腦結構及其活動機理的認識還十分膚淺,並且帶有某種「先驗」。例如, Boltzmann機引入隨機擾動來避免局部極小,有其卓越之處,然而缺乏必要的腦生理學基礎,毫無疑問,人工神經網路的完善與發展要結合神經科學的研究。而且,神經科學,心理學和認識科學等方面提出的一些重大問題,是向神經網路理論研究提出的新挑戰,這些問題的解決有助於完善和發展神經網路理論。因此利用神經生理和認識科學研究大腦思維及智能的機理,如有新的突破,將會改變智能和機器關系的認識。
利用神經科學基礎理論的研究成果,用數理方法探索智能水平更高的人工神經網路模型,深入研究網路的演算法和性能,如神經計算、進化計算、穩定性、收斂性、計算復雜性、容錯性、魯棒性等,開發新的網路數理理論。由於神經網路的非線性,因此非線性問題的研究是神經網路理論發展的一個最大動力。特別是人們發現,腦中存在著混沌現象以來,用混沌動力學啟發神經網路的研究或用神經網路產生混沌成為擺在人們面前的一個新課題,因為從生理本質角度出發是研究神經網路的根本手段。
(2)神經網路軟體模擬, 硬體實現的研究以及神經網路在各個科學技術領域應用的研究。
由於人工神經網路可以用傳統計算機模擬,也可以用集成電路晶元組成神經計算機,甚至還可以用光學的、生物晶元的方式實現,因此研製純軟體模擬,虛擬模擬和全硬體實現的電子神經網路計算機潛力巨大。如何使神經網路計算機與傳統的計算機和人工智慧技術相結合也是前沿課題;如何使神經網路計算機的功能向智能化發展,研製與人腦功能相似的智能計算機,如光學神經計算機,分子神經計算機,將具有十分誘人的前景。
4 哲理
(1)人工神經網路打開了認識論的新領域
認識與腦的問題,長期以來一直受到人們的關注,因為它不僅是有關人的心理、意識的心理學問題,也是有關人的思維活動機制的腦科學與思維科學問題,而且直接關繫到對物質與意識的哲學基本問題的回答。人工神經網路的發展使我們能夠更進一步地既唯物又辯證地理解認識與腦的關系,打開認識論的新領域。人腦是一個復雜的並行系統,它具有「認知、意識、情感」等高級腦功能,用人工進行模擬,有利於加深對思維及智能的認識,已對認知和智力的本質的研究產生了極大的推動作用。在研究大腦的整體功能和復雜性方面,人工神經網路給人們帶來了新的啟迪。由於人腦中存在混沌現象,混沌可用來理解腦中某些不規則的活動,從而混沌動力學模型能用作人對外部世界建模的工具,可用來描述人腦的信息處理過程。混沌和智能是有關的,神經網路中引入混沌學思想有助於提示人類形象思維等方面的奧秘。人工神經網路之所以再度興起,關鍵在於它反映了事物的非線性,抓住了客觀世界的本質,而且它在一定程度上正面回答了智能系統如何從環境中自主學習這一最關鍵的問題,從認知的角度講,所謂學習,就是對未知現象或規律的發現和歸納。由於神經網路具有高度的並行性,高度的非線性全局作用,良好的容錯性與聯想記憶功能以及十分強的自適應、自學習功能,而使得它成為揭示智能和了解人腦工作方式的合理途徑。但是,由於認知問題的復雜性,目前,我們對於腦神經網的運行和神經細胞的內部處理機制,如信息在人腦是如何傳輸、存貯、加工的?記憶、聯想、判斷是如何形成的?大腦是否存在一個操作系統?還沒有太多的認識,因此要製造人工神經網路來模仿人腦各方面的功能,還有待於人們對大腦信息處理機理認識的深化。
(2)人工神經網路發展的推動力來源於實踐、 理論和問題的相互作用
隨著人們社會實踐范圍的不斷擴大,社會實踐層次的不斷深入,人們所接觸到的自然現象也越來越豐富多彩、紛繁復雜,這就促使人們用不同的原因加以解釋不同種類的自然現象,當不同種類的自然現象可以用同樣的原因加以解釋,這樣就出現了不同學科的相互交叉、綜合,人工神經網路就這樣產生了。在開始階段,由於這些理論化的網路模型比較簡單,還存在許多問題,而且這些模型幾乎沒有得到實踐的檢驗,因而神經網路的發展比較緩慢。隨著理論研究的深入,問題逐漸地解決特別是工程上得到實現以後,如聲納識別成功,才迎來了神經網路的第一個發展高潮。可Minisky認為感知器不能解決異或問題, 多層感知器也不過如此,神經網路的研究進入了低谷,這主要是因為非線性問題沒得到解決。隨著理論的不斷豐富,實踐的不斷深入, 現在已證明Minisky的悲觀論調是錯誤的。今天,高度發達的科學技術逐漸揭示了非線性問題是客觀世界的本質。問題、理論、實踐的相互作用又迎來了人工神經網路的第二次高潮。目前人工神經網路的問題是智能水平不高,還有其它理論和實現方面的問題,這就迫使人們不斷地進行理論研究,不斷實踐,促使神經網路不斷向前發展。總之,先前的原因遇到了解釋不同的新現象,促使人們提出更加普遍和精確的原因來解釋。理論是基礎,實踐是動力,但單純的理論和實踐的作用還不能推動人工神經網路的發展,還必須有問題提出,才能吸引科學家進入研究的特定范圍,引導科學家從事相關研究,從而逼近科學發現,而後實踐又提出新問題,新問題又引發新的思考,促使科學家不斷思考,不斷完善理論。人工神經網路的發展無不體現著問題、理論和實踐的辯證統一關系。
(3 )人工神經網路發展的另一推動力來源於相關學科的貢獻及不同學科專家的競爭與協同
人工神經網路本身就是一門邊緣學科,它的發展有更廣闊的科學背景,亦即是眾多科研成果的綜合產物,控制論創始人Wiener在其巨著《控制論》中就進行了人腦神經元的研究;計算機科學家Turing就提出過B網路的設想;Prigogine提出非平衡系統的自組織理論,獲得諾貝爾獎;Haken研究大量元件聯合行動而產生宏觀效果, 非線性系統「混沌」態的提出及其研究等,都是研究如何通過元件間的相互作用建立復雜系統,類似於生物系統的自組織行為。腦科學與神經科學的進展迅速反映到人工神經網路的研究中,例如生物神經網路理論,視覺中發現的側抑制原理,感受野概念等,為神經網路的發展起了重要的推動作用。從已提出的上百種人工神經網路模型中,涉及學科之多,令人目不暇接,其應用領域之廣,令人嘆為觀止。不同學科專家為了在這一領域取得領先水平,存在著不同程度的競爭,所有這些有力地推動了人工神經網路的發展。人腦是一個功能十分強大、結構異常復雜的信息系統,隨著資訊理論、控制論、生命科學,計算機科學的發展,人們越來越驚異於大腦的奇妙,至少到目前為止,人類大腦信號處理機制對人類自身來說,仍是一個黑盒子,要揭示人腦的奧秘需要神經學家、心理學家、計算機科學家、微電子學家、數學家等專家的共同努力,對人類智能行為不斷深入研究,為人工神經網路發展提供豐富的理論源泉。另外,還要有哲學家的參與,通過哲學思想和自然科學多種學科的深層結合,逐步孕育出探索人類思維本質和規律的新方法,使思維科學從朦朧走向理性。而且,不同領域專家的競爭與協調同有利於問題清晰化和尋求最好的解決途徑。縱觀神經網路的發展歷史,沒有相關學科的貢獻,不同學科專家的競爭與協同,神經網路就不會有今天。當然,人工神經網路在各個學科領域應用的研究反過來又推動其它學科的發展,推動自身的完善和發展。
㈨ 什麼叫數據挖掘、神經網路
數據挖掘(Data Mining)是指通過大量數據集進行分類的自動化過程,以通過數據分析來識別趨勢和模式,建立關系來解決業務問題。換句話說,數據挖掘是從大量的、不完全的、有雜訊的、模糊的、隨機的數據中提取隱含在其中的、人們事先不知道的、但又是潛在有用的信息和知識的過程。
原則上講,數據挖掘可以應用於任何類型的信息存儲庫及瞬態數據(如數據流),如資料庫、數據倉庫、數據集市、事務資料庫、空間資料庫(如地圖等)、工程設計數據(如建築設計等)、多媒體數據(文本、圖像、視頻、音頻)、網路、數據流、時間序列資料庫等。也正因如此,數據挖掘存在以下特點:
(1)數據集大且不完整
數據挖掘所需要的數據集是很大的,只有數據集越大,得到的規律才能越貼近於正確的實際的規律,結果也才越准確。除此以外,數據往往都是不完整的。
(2)不準確性
數據挖掘存在不準確性,主要是由雜訊數據造成的。比如在商業中用戶可能會提供假數據;在工廠環境中,正常的數據往往會收到電磁或者是輻射干擾,而出現超出正常值的情況。這些不正常的絕對不可能出現的數據,就叫做雜訊,它們會導致數據挖掘存在不準確性。
(3)模糊的和隨機的
數據挖掘是模糊的和隨機的。這里的模糊可以和不準確性相關聯。由於數據不準確導致只能在大體上對數據進行一個整體的觀察,或者由於涉及到隱私信息無法獲知到具體的一些內容,這個時候如果想要做相關的分析操作,就只能在大體上做一些分析,無法精確進行判斷。
而數據的隨機性有兩個解釋,一個是獲取的數據隨機;我們無法得知用戶填寫的到底是什麼內容。第二個是分析結果隨機。數據交給機器進行判斷和學習,那麼一切的操作都屬於是灰箱操作。
神經網路:
神經網路由於本身良好的魯棒性、自組織自適應性、並行處理、分布存儲和高度容錯等特性非常適合解決數據挖掘的問題,因此近年來越來越受到人們的關注。
㈩ 人工智慧:什麼是人工神經網路
許多 人工智慧 計算機系統的核心技術是人工神經網路(ANN),而這種網路的靈感來源於人類大腦中的生物結構。
通過使用連接的「神經元」結構,這些網路可以通過「學習」並在沒有人類參與的情況下處理和評估某些數據。
這樣的實際實例之一是使用人工神經網路(ANN)識別圖像中的對象。在構建一個識別「貓「圖像的一個系統中,將在包含標記為「貓」的圖像的數據集上訓練人工神經網路,該數據集可用作任何進行分析的參考點。正如人們可能學會根據尾巴或皮毛等獨特特徵來識別狗一樣,人工神經網路(ANN)也可以通過將每個圖像分解成不同的組成部分(如顏色和形狀)進行識別。
實際上,神經網路提供了位於託管數據之上的排序和分類級別,可基於相似度來輔助數據的聚類和分組。可以使用人工神經網路(ANN)生成復雜的垃圾郵件過濾器,查找欺詐行為的演算法以及可以精確了解情緒的客戶關系工具。
人工神經網路如何工作
人工神經網路的靈感來自人腦的神經組織,使用類似於神經元的計算節點構造而成,這些節點沿著通道(如神經突觸的工作方式)進行信息交互。這意味著一個計算節點的輸出將影響另一個計算節點的處理。
神經網路標志著人工智慧發展的巨大飛躍,在此之前,人工智慧一直依賴於使用預定義的過程和定期的人工干預來產生所需的結果。人工神經網路可以使分析負載分布在多個互連層的網路中,每個互連層包含互連節點。在處理信息並對其進行場景處理之後,信息將傳遞到下一個節點,然後向下傳遞到各個層。這個想法是允許將其他場景信息接入網路,以通知每個階段的處理。
單個「隱藏」層神經網路的基本結構
就像漁網的結構一樣,神經網路的一個單層使用鏈將處理節點連接在一起。大量的連接使這些節點之間的通信得到增強,從而提高了准確性和數據處理吞吐量。
然後,人工神經網路將許多這樣的層相互疊放以分析數據,從而創建從第一層到最後一層的輸入和輸出數據流。盡管其層數將根據人工神經網路的性質及其任務而變化,但其想法是將數據從一層傳遞到另一層,並隨其添加附加的場景信息。
人腦是用3D矩陣連接起來的,而不是大量堆疊的圖層。就像人類大腦一樣,節點在接收到特定刺激時會在人工神經網路上「發射」信號,並將信號傳遞到另一個節點。但是,對於人工神經網路,輸入信號定義為實數,輸出為各種輸入的總和。
這些輸入的值取決於它們的權重,該權重用於增加或減少與正在執行的任務相對應的輸入數據的重要性。其目標是採用任意數量的二進制數值輸入並將其轉換為單個二進制數值輸出。
更復雜的神經網路提高了數據分析的復雜性
早期的神經網路模型使用淺層結構,其中只使用一個輸入和輸出層。而現代的系統由一個輸入層和一個輸出層組成,其中輸入層首先將數據輸入網路,多個「隱藏」層增加了數據分析的復雜性。
這就是「深度學習」一詞的由來——「深度」部分專門指任何使用多個「隱藏」層的神經網路。
聚會的例子
為了說明人工神經網路在實際中是如何工作的,我們將其簡化為一個實際示例。
想像一下你被邀請參加一個聚會,而你正在決定是否參加,這可能需要權衡利弊,並將各種因素納入決策過程。在此示例中,只選擇三個因素——「我的朋友會去嗎?」、「聚會地點遠嗎?」、「天氣會好嗎?」
通過將這些考慮因素轉換為二進制數值,可以使用人工神經網路對該過程進行建模。例如,我們可以為「天氣」指定一個二進制數值,即『1'代表晴天,『0'代表惡劣天氣。每個決定因素將重復相同的格式。
然而,僅僅賦值是不夠的,因為這不能幫助你做出決定。為此需要定義一個閾值,即積極因素的數量超過消極因素的數量。根據二進制數值,合適的閾值可以是「2」。換句話說,在決定參加聚會之前,需要兩個因素的閾值都是「1」,你才會決定去參加聚會。如果你的朋友要參加聚會(『1'),並且天氣很好(『1'),那麼這就表示你可以參加聚會。
如果天氣不好(『0'),並且聚會地點很遠(『0'),則達不到這一閾值,即使你的朋友參加(『1'),你也不會參加聚會。
神經加權
誠然,這是神經網路基本原理的一個非常基本的例子,但希望它有助於突出二進制值和閾值的概念。然而,決策過程要比這個例子復雜得多,而且通常情況下,一個因素比另一個因素對決策過程的影響更大。
要創建這種變化,可以使用「神經加權」——-通過乘以因素的權重來確定因素的二進制值對其他因素的重要性。
盡管示例中的每個注意事項都可能使你難以決策,但你可能會更重視其中一個或兩個因素。如果你不願意在大雨中出行去聚會,那惡劣的天氣將會超過其他兩個考慮因素。在這一示例中,可以通過賦予更高的權重來更加重視天氣因素的二進制值:
天氣= w5
朋友= w2
距離= w2
如果假設閾值現在已設置為6,則惡劣的天氣(值為0)將阻止其餘輸入達到所需的閾值,因此該節點將不會「觸發」(這意味著你將決定不參加聚會)。
雖然這是一個簡單的示例,但它提供了基於提供的權重做出決策的概述。如果要將其推斷為圖像識別系統,則是否參加聚會(輸入)的各種考慮因素將是給定圖像的折衷特徵,即顏色、大小或形狀。例如,對識別狗進行訓練的系統可以對形狀或顏色賦予更大的權重。
當神經網路處於訓練狀態時,權重和閾值將設置為隨機值。然後,當訓練數據通過網路傳遞時將不斷進行調整,直到獲得一致的輸出為止。
神經網路的好處
神經網路可以有機地學習。也就是說,神經網路的輸出結果並不受輸入數據的完全限制。人工神經網路可以概括輸入數據,使其在模式識別系統中具有價值。
他們還可以找到實現計算密集型答案的捷徑。人工神經網路可以推斷數據點之間的關系,而不是期望數據源中的記錄是明確關聯的。
它們也可以是容錯的。當神經網路擴展到多個系統時,它們可以繞過無法通信的缺失節點。除了圍繞網路中不再起作用的部分進行路由之外,人工神經網路還可以通過推理重新生成數據,並幫助確定不起作用的節點。這對於網路的自診斷和調試非常有用。
但是,深度神經網路提供的最大優勢是能夠處理和聚類非結構化數據,例如圖片、音頻文件、視頻、文本、數字等數據。在分析層次結構中,每一層節點都在前一層的輸出上進行訓練,深層神經網路能夠處理大量的這種非結構化數據,以便在人類處理分析之前找到相似之處。
神經網路的例子
神經網路應用還有許多示例,可以利用它從復雜或不精確數據中獲得見解的能力。
圖像識別人工神經網路可以解決諸如分析特定物體的照片等問題。這種演算法可以用來區分狗和貓。更重要的是,神經網路已經被用於只使用細胞形狀信息來診斷癌症。
近30年來,金融神經網路被用於匯率預測、股票表現和選擇預測。神經網路也被用來確定貸款信用評分,學習正確識別良好的或糟糕的信用風險。而電信神經網路已被電信公司用於通過實時評估網路流量來優化路由和服務質量。