Ⅰ 應用計量經濟學時間序列分析在股票預測上有多大的作用
作用沒有想像中的大,你可以用股票的滯後變數來進行回歸分析,滯後2~3期就夠了,不過數據必須具體點,最好細分到每季度、每月的上證指數,還有時間上怎麼也要十年左右吧!
我以前在論文附錄中做過分析,數據都是自己按季度整理的,挺麻煩的呢,如果需要的話就發給你~
還有就是,我覺得寫關於股票的預測方面的實際用處並不是很大,畢竟股票的影響因素太多,單單的憑藉以前的走勢而預期太不好了。。我自己也炒股票,就像那些macd、kdj之類的指標根本就起不到太大的作用,如果那個能預期的話,股市豈不就成了提款機了?現在你做的這個就像是那些指標一樣,要知道,股市是活的,人是活的,而指標確實死的!說這么多的意思就是股市不是能簡單預測的,你做的那個用處不大。。
如果你想做的話,建議換個題目,我當時的寫的是對弗里德曼的貨幣需求理論在中國市場的分析。你可以寫寫貨幣供應量對通貨膨脹的時滯性,分析下在我國市場的滯後期大概是多少~數據在國家統計局和中國人民銀行都可以找到的,樣本空間一定要足夠大,在對滯後變數分析時候主要考慮各自的T檢驗是否通過,一般從通過之後大概就是那個的滯後期!這個比較直接反而有些許用處~
要是能分析出國家的一般性政策對實體市場的影響就更好了,更有用了~
呵呵,以上只是自己的建議~有什麼其他的問題就給我留言吧~
Ⅱ 非平穩時間序列可以預測股票走勢嗎
一般把非平穩時間序列轉化為平穩時間序列的方法是取n階差分法。
比如舉個例子,假設xt本身是不平穩的時間序列,如果xt~I(1) ,也就是說x的1階差分是平穩序列。
那麼 xt的1階差分dxt=x(t)-x(t-1) 就是平穩的序列 這時dt=x(t-1)
如果xt~I(2),就是說xt的2階差分是平穩序列的話
xt的1n階差分dxt=x(t)-x(t-1) 這時xt的1階差分依然不平穩,
那麼 對xt的1階差分再次差分後,
xt的2階差分ddxt=dxt-dxt(t-1)便是平穩序列 這時dt=-x(t-1)-dxt(t-1)
n階的話可以依次類推一下。
Ⅲ 時間序列在股市有哪些應用
時間序列分析在股票市場中的應用
摘要
在現代金融浪潮的推動下,越來越多的人加入到股市,進行投資行為,以期得到豐厚的回報,這極大促進了股票市場的繁榮。而在這種投資行為的背後,越來越多的投資者逐漸意識到股市預測的重要性。
所謂股票預測是指:根據股票現在行情的發展情況地對未來股市發展方向以及漲跌程度的預測行為。這種預測行為只是基於假定的因素為既定的前提條件為基礎的。但是在股票市場中,行情的變化與國家的宏觀經濟發展、法律法規的制定、公司的運營、股民的信心等等都有關聯,因此所謂的預測難於准確預計。
時間序列分析是經濟預測領域研究的重要工具之一,它描述歷史數據隨時間變化的規律,並用於預測經濟數據。在股票市場上,時間序列預測法常用於對股票價格趨勢進行預測,為投資者和股票市場管理管理方提供決策依據。
Ⅳ 對股票收盤價進行時間序列分析,預測其下一個交易日的收盤價,並與實際收盤價格進行對比
股票投資的分析這么復雜啊,先問問老師有依據這個買股票沒,再回答。
Ⅳ 請股票高手給我解釋一下江恩時間序列的奧秘
這是江恩選擇過的周期,最可能出現變異點的地方,你在圖上照著這個指標用就行了。要究其源的話去找個羅盤來看,中心是一也是一波價格的起始點,依次逆時針螺旋往外數格子,這些數字就是價格大概率變異點,時間周期在羅盤上是固定的24個格子,所以數的時候可以不管它,這些數字多是在時間格子的季節變異點處,你知道一年四季24節氣吧?江恩理論理論上很完美,但是市場價格不像地球運動周期那樣有規律,不過漲跌力量的逐漸轉換和季節的輪換是一樣的都有時間上的順序和價格轉變上的過程,江恩理論是唯一的分析價的格理論中同時考慮時間空間的預測方法,懂了江恩理論你會延伸的了解很多很多的東西,江恩很喜歡中國的易經,他的風格也是源於易經,你可以去看看
Ⅵ 時間序列法屬於股票技術分析手段嗎
斐波那契數列和盧卡斯數列
Ⅶ 如何用R 語言 建立 股票價格的時間序列
在下想用R語言對股票價格進行時間序列分析。
問題出在第一步,如何將股票價格轉換為時間序列。
我想用的語句是 pri <- ts (data, start=(), frequency= )
但是我不知道frequency 項該如何填?
因為股票的交易日是一周五天的。 那麼這個frequency 該如何設置呢?
我知道通常frequency= 12 為月度數據,frequency= 4 為季度數據,frequency= 1 為年度數據 但日數據怎麼寫我就不知道了
初學R語言,還望各位大俠多多幫助。
Ⅷ 時間序列在股市行情預測中的應用論文怎麼寫
作用沒有想像中的大,你可以用股票的滯後變數來進行回歸分析,滯後2~3期就夠了,不過數據必須具體點,最好細分到每季度、每月的上證指數,還有時間上怎麼也要十年左右吧!
我以前在論文附錄中做過分析,數據都是自己按季度整理的,挺麻煩的呢,如果需要的話就發給你~
還有就是,我覺得寫關於股票的預測方面的實際用處並不是很大,畢竟股票的影響因素太多,單單的憑藉以前的走勢而預期太不好了。。我自己也炒股票,就像那些macd、kdj之類的指標根本就起不到太大的作用,如果那個能預期的話,股市豈不就成了提款機了?現在你做的這個就像是那些指標一樣,要知道,股市是活的,人是活的,而指標確實死的!說這么多的意思就是股市不是能簡單預測的,你做的那個用處不大。。
如果你想做的話,建議換個題目,我當時的寫的是對弗里德曼的貨幣需求理論在中國市場的分析。你可以寫寫貨幣供應量對通貨膨脹的時滯性,分析下在我國市場的滯後期大概是多少~數據在國家統計局和中國人民銀行都可以找到的,樣本空間一定要足夠大,在對滯後變數分析時候主要考慮各自的T檢驗是否通過,一般從通過之後大概就是那個的滯後期!這個比較直接反而有些許用處~
要是能分析出國家的一般性政策對實體市場的影響就更好了,更有用了~
呵呵,以上只是自己的建議~有什麼其他的問題就給我留言吧~
Ⅸ 如何深入理解時間序列分析中的平穩性
聲明:本文中所有引用部分,如非特別說明,皆引自Time Series Analysis with Applications in R.
接觸時間序列分析才半年,盡力回答。如果回答有誤,歡迎指出。
對第一個問題,我們把它拆分成以下兩個問題:
Why stationary?(為何要平穩?)
Why weak stationary?(為何弱平穩?)
Why stationary?(為何要平穩?)
每一個統計學問題,我們都需要對其先做一些基本假設。如在一元線性回歸中(),我們要假設:①不相關且非隨機(是固定值或當做已知)②獨立同分布服從正態分布(均值為0,方差恆定)。
在時間序列分析中,我們考慮了很多合理且可以簡化問題的假設。而其中最重要的假設就是平穩。
The basic idea of stationarity is that the probability laws that govern the behavior of the process do not change over time.
平穩的基本思想是:時間序列的行為並不隨時間改變。
正因此,我們定義了兩種平穩:
Strict stationarity: A time series {} is said to be strictly stationary if the joint distribution of ,, · · ·, is the same as that of,, · · · ,for all choices of natural number n, all choices of time points ,, · · · , and all choices of time lag k.
強平穩過程:對於所有可能的n,所有可能的,, · · · , 和所有可能的k,當,, · · ·,的聯合分布與,, · · · ,相同時,我們稱其強平穩。
Weak stationarity: A time series {} is said to be weakly (second-order, or co-variance) stationary if:
① the mean function is constant over time, and
② γ(t, t − k) = γ(0, k) for all times t and lags k.
弱平穩過程:當①均值函數是常數函數且②協方差函數僅與時間差相關,我們才稱其為弱平穩。
此時我們轉到第二個問題:Why weak stationary?(為何弱平穩?)
我們先來說說兩種平穩的差別:
兩種平穩過程並沒有包含關系,即弱平穩不一定是強平穩,強平穩也不一定是弱平穩。
一方面,雖然看上去強平穩的要求好像比弱平穩強,但強平穩並不一定是弱平穩,因為其矩不一定存在。
例子:{}獨立服從柯西分布。{}是強平穩,但由於柯西分布期望與方差不存在,所以不是弱平穩。(之所以不存在是因為其並非絕對可積。)
另一方面,弱平穩也不一定是強平穩,因為二階矩性質並不能確定分布的性質。
例子:,,互相獨立。這是弱平穩卻不是強平穩。
知道了這些造成差別的根本原因後,我們也可以寫出兩者的一些聯系:
一階矩和二階矩存在時,強平穩過程是弱平穩過程。(條件可簡化為二階矩存在,因為)
當聯合分布服從多元正態分布時,兩平穩過程等價。(多元正態分布的二階矩可確定分布性質)
而為什麼用弱平穩而非強平穩,主要原因是:強平穩條件太強,無論是從理論上還是實際上。
理論上,證明一個時間序列是強平穩的一般很難。正如定義所說,我們要比較,對於所有可能的n,所有可能的,, · · · , 和所有可能的k,當,, · · ·,的聯合分布與,, · · · ,相同。當分布很復雜的時候,不僅很難比較所有可能性,也可能很難寫出其聯合分布函數。
實際上,對於數據,我們也只能估算出它們均值和二階矩,我們沒法知道它們的分布。所以我們在以後的模型構建和預測上都是在用ACF,這些性質都和弱項和性質有關。而且,教我時間序列教授說過:"General linear process(weak stationarity, linearity, causality) covers about 10% of the real data." ,如果考慮的是強平穩,我覺得可能連5%都沒有了。
對第二個問題:
教授有天在審本科畢業論文,看到一個寫金融的,用平穩時間序列去估計股票走勢(真不知這老兄怎麼想的)。當時教授就說:「金融領域很多東西之所以難以估計,就是因為其經常突變,根本就不是平穩的。」
果不其然,論文最後實踐階段,對於股票選擇的正確率在40%。連期望50%都不到(任意一點以後要麼漲要麼跌)。
暑假裡自己用了一些時間序列的方法企圖開發程序性交易程序。
剛開始收益率還好,越往後就越...後面直接虧損了...(軟體是金字塔,第二列是利潤率)
虧損的圖當時沒截,現在也沒法補了,程序都刪了。
所以應該和平穩沒關系吧,畢竟我的做法也沒假設是平穩的。如果平穩我就不會之後不盈利了。
(吐槽)自己果然不適合做股票、期貨什麼的...太高端理解不能...