1. 波動聚類(volatility clustering)
經典資本市場理論在描述股票市場收益率變化時,所採用的計量模型一般都假定收益率方差保持不變。這一模型符合金融市場中有效市場理論,運用簡便,常用來預測和估算股票價格。但對金融數據的大量實證研究表明,有些假設不甚合理。一些金融時間序列常常會出現某一特徵的值成群出現的現象。如對股票收益率建模,其隨機攪動項往往在較大幅度波動後面伴隨著較大幅度的波動,在較小波動幅度後面緊接著較小幅度的波動,這種性質稱為波動率聚類(volatility clustering)。該現象的出現源於外部沖擊對股價波動的持續性影響,在收益率的分布上則表現為出尖峰厚尾(fattails)的特徵。
2. 數據挖掘相關問題
2.聚類結果{2,4,10,12,3,11}{20}{30,25}
3.移動平均結果
{10.83333333
10.33333333
11.16666667
10.33333333
11.83333333
12.5
10.83333333
11.33333333
10.5
11.33333333
9.833333333
9.166666667
}
4.預測股票價格的方法:時間序列方法
3. 股票數據採集難嗎
要想自己采也行,我之前采過股市數據。用的是ForeSpider這個軟體。這個軟體他自身有數據挖掘分析功能,自己就進行聚類分類,統計分析了,採集的結果入庫後可以形成分析報表,直接瀏覽就行了,還是很方便的,你可以去看看。操作也是不難,非計算機專業的人也能使。
希望我的回答對你有幫助。
4. 如何用Python和機器學習炒股賺錢
相信很多人都想過讓人工智慧來幫你賺錢,但到底該如何做呢?瑞士日內瓦的一位金融數據顧問 Gaëtan Rickter 近日發表文章介紹了他利用 Python 和機器學習來幫助炒股的經驗,其最終成果的收益率跑贏了長期處於牛市的標准普爾 500 指數。雖然這篇文章並沒有將他的方法完全徹底公開,但已公開的內容或許能給我們帶來如何用人工智慧炒股的啟迪。
我終於跑贏了標准普爾 500 指數 10 個百分點!聽起來可能不是很多,但是當我們處理的是大量流動性很高的資本時,對沖基金的利潤就相當可觀。更激進的做法還能得到更高的回報。
這一切都始於我閱讀了 Gur Huberman 的一篇題為《Contagious Speculation and a Cure for Cancer: A Non-Event that Made Stock Prices Soar》的論文。該研究描述了一件發生在 1998 年的涉及到一家上市公司 EntreMed(當時股票代碼是 ENMD)的事件:
「星期天《紐約時報》上發表的一篇關於癌症治療新葯開發潛力的文章導致 EntreMed 的股價從周五收盤時的 12.063 飆升至 85,在周一收盤時接近 52。在接下來的三周,它的收盤價都在 30 以上。這股投資熱情也讓其它生物科技股得到了溢價。但是,這個癌症研究方面的可能突破在至少五個月前就已經被 Nature 期刊和各種流行的報紙報道過了,其中甚至包括《泰晤士報》!因此,僅僅是熱情的公眾關注就能引發股價的持續上漲,即便實際上並沒有出現真正的新信息。」
在研究者給出的許多有見地的觀察中,其中有一個總結很突出:
「(股價)運動可能會集中於有一些共同之處的股票上,但這些共同之處不一定要是經濟基礎。」
我就想,能不能基於通常所用的指標之外的其它指標來劃分股票。我開始在資料庫裡面挖掘,幾周之後我發現了一個,其包含了一個分數,描述了股票和元素周期表中的元素之間的「已知和隱藏關系」的強度。
我有計算基因組學的背景,這讓我想起了基因和它們的細胞信號網路之間的關系是如何地不為人所知。但是,當我們分析數據時,我們又會開始看到我們之前可能無法預測的新關系和相關性。
如果你使用機器學習,就可能在具有已知和隱藏關系的上市公司的寄生、共生和共情關系之上搶佔先機,這是很有趣而且可以盈利的。最後,一個人的盈利能力似乎完全關乎他在生成這些類別的數據時想出特徵標簽(即概念(concept))的強大組合的能力。
我在這類模型上的下一次迭代應該會包含一個用於自動生成特徵組合或獨特列表的單獨演算法。也許會基於近乎實時的事件,這可能會影響那些具有隻有配備了無監督學習演算法的人類才能預測的隱藏關系的股票組。
5. 量化投資—策略與技術的作品目錄
《量化投資—策略與技術》
策略篇
第 1章 量化投資概念
1.1 什麼是量化投資 2
1.1.1 量化投資定義 2
1.1.2 量化投資理解誤區 3
1.2 量化投資與傳統投資比較 6
1.2.1 傳統投資策略的缺點 6
1.2.2 量化投資策略的優勢 7
1.2.3 量化投資與傳統投資策略的比較 8
1.3 量化投資歷史 10
1.3.1 量化投資理論發展 10
1.3.2 海外量化基金的發展 12
1.3.3 量化投資在中國 15
1.4 量化投資主要內容 16
1.5 量化投資主要方法 21
.第 2章 量化選股 25
2.1 多因子 26
2.1.1 基本概念 27
2.1.2 策略模型 27
2.1.3 實證案例:多因子選股模型 30
2.2 風格輪動 35
2.2.1 基本概念 35
2.2.2 盈利預期生命周期模型 38
2.2.3 策略模型 40
2.2.4 實證案例:中信標普風格 41
2.2.5 實證案例:大小盤風格 44
2.3 行業輪動 47
2.3.1 基本概念 47
2.3.2 m2行業輪動策略 50
2.3.3 市場情緒輪動策略 52
2.4 資金流 56
2.4.1 基本概念 56
2.4.2 策略模型 59
2.4.3 實證案例:資金流選股策略 60
2.5 動量反轉 63
2.5.1 基本概念 63
2.5.2 策略模型 67
2.5.3 實證案例:動量選股策略和反轉選股策略 70
2.6 一致預期 73
2.6.1 基本概念 74
2.6.2 策略模型 76
2.6.3 實證案例:一致預期模型案例 78
2.7 趨勢追蹤 84
2.7.1 基本概念 84
2.7.2 策略模型 86
2.7.3 實證案例:趨勢追蹤選股模型 92
2.8 籌碼選股 94
2.8.1 基本概念 95
2.8.2 策略模型 97
2.8.3 實證案例:籌碼選股模型 99
2.9 業績評價 104
2.9.1 收益率指標 104
2.9.2 風險度指標 105
第 3章 量化擇時 111
3.1 趨勢追蹤 112
3.1.1 基本概念 112
3.1.2 傳統趨勢指標 113
3.1.3 自適應均線 121
3.2 市場情緒 125
3.2.1 基本概念 126
3.2.2 情緒指數 128
3.2.3 實證案例:情緒指標擇時策略 129
3.3 有效資金 133
3.3.1 基本概念 133
3.3.2 策略模型 134
3.3.3 實證案例:有效資金擇時模型 137
3.4 牛熊線 141
3.4.1 基本概念 141
3.4.2 策略模型 143
3.4.3 實證案例:牛熊線擇時模型 144
3.5 husrt指數 146
3.5.1 基本概念 146
3.5.2 策略模型 148
3.5.3 實證案例 149
3.6 支持向量機 152
3.6.1 基本概念 152
3.6.2 策略模型 153
3.6.3 實證案例:svm擇時模型 155
3.7 swarch模型 160
3.7.1 基本概念 160
3.7.2 策略模型 161
3.7.3 實證案例:swarch模型 164
3.8 異常指標 168
3.8.1 市場雜訊 168
3.8.2 行業集中度 170
3.8.3 興登堡凶兆 172
第 4章 股指期貨套利 180
4.1 基本概念 181
4.1.1 套利介紹 181
4.1.2 套利策略 183
4.2 期現套利 185
4.2.1 定價模型 185
4.2.2 現貨指數復制 186
4.2.3 正向套利案例 190
4.2.4 結算日套利 192
4.3 跨期套利 195
4.3.1 跨期套利原理 195
4.3.2 無套利區間 196
4.3.3 跨期套利觸發和終止 197
4.3.4 實證案例:跨期套利策略 199
4.3.5 主要套利機會 200
4.4 沖擊成本 203
4.4.1 主要指標 204
4.4.2 實證案例:沖擊成本 205
4.5 保證金管理 208
4.5.1 var方法 208
4.5.2 var計算方法 209
4.5.3 實證案例 211
第 5章 商品期貨套利 214
5.1 基本概念 215
5.1.1 套利的條件 216
5.1.2 套利基本模式 217
5.1.3 套利准備工作 219
5.1.4 常見套利組合 221
5.2 期現套利 225
5.2.1 基本原理 225
5.2.2 操作流程 226
5.2.3 增值稅風險 230
5.3 跨期套利 231
5.3.1 套利策略 231
5.3.2 實證案例:pvc跨期套利策略 233
5.4 跨市場套利 234
5.4.1 套利策略 234
5.4.2 實證案例:倫銅—滬銅跨市場套利 235
5.5 跨品種套利 236
5.5.1 套利策略 237
5.5.2 實證案例 238
5.6 非常狀態處理 240
第 6章 統計套利 242
6.1 基本概念 243
6.1.1 統計套利定義 243
6.1.2 配對交易 244
6.2 配對交易 247
6.2.1 協整策略 247
6.2.2 主成分策略 254
6.2.3 績效評估 256
6.2.4 實證案例:配對交易 258
6.3 股指套利 261
6.3.1 行業指數套利 261
6.3.2 國家指數套利 263
6.3.3 洲域指數套利 264
6.3.4 全球指數套利 266
6.4 融券套利 267
6.4.1 股票—融券套利 267
6.4.2 可轉債—融券套利 268
6.4.3 股指期貨—融券套利 269
6.4.4 封閉式基金—融券套利 271
6.5 外匯套利 272
6.5.1 利差套利 273
6.5.2 貨幣對套利 275
第 7章 期權套利 277
7.1 基本概念 278
7.1.1 期權介紹 278
7.1.2 期權交易 279
7.1.3 牛熊證 280
7.2 股票/期權套利 283
7.2.1 股票—股票期權套利 283
7.2.2 股票—指數期權套利 284
7.3 轉換套利 285
7.3.1 轉換套利 285
7.3.2 反向轉換套利 287
7.4 跨式套利 288
7.4.1 買入跨式套利 289
7.4.2 賣出跨式套利 291
7.5 寬跨式套利 293
7.5.1 買入寬跨式套利 293
7.5.2 賣出寬跨式套利 294
7.6 蝶式套利 296
7.6.1 買入蝶式套利 296
7.6.2 賣出蝶式套利 298
7.7 飛鷹式套利 299
7.7.1 買入飛鷹式套利 300
7.7.2 賣出飛鷹式套利 301
第 8章 演算法交易 304
8.1 基本概念 305
8.1.1 演算法交易定義 305
8.1.2 演算法交易分類 306
8.1.3 演算法交易設計 308
8.2 被動交易演算法 309
8.2.1 沖擊成本 310
8.2.2 等待風險 312
8.2.3 常用被動型交易策略 314
8.3 vwap演算法 316
8.3.1 標准vwap演算法 316
8.3.2 改進型vwap演算法 319
第 9章 其他策略 323
9.1 事件套利 324
9.1.1 並購套利策略 324
9.1.2 定向增發套利 325
9.1.3 套利重倉停牌股票的投資組合 326
9.1.4 封閉式投資組合套利 327
9.2 etf套利 328
9.2.1 基本概念 328
9.2.2 無風險套利 330
9.2.3 其他套利 334
9.3 lof套利 335
9.3.1 基本概念 335
9.3.2 模型策略 336
9.3.3 實證案例:lof 套利 337
9.4 高頻交易 341
9.4.1 流動性回扣交易 341
9.4.2 獵物演算法交易 342
9.4.3 自動做市商策略 343
9.4.4 程序化交易 343
理論篇
第 10章 人工智慧 346
10.1 主要內容 347
10.1.1 機器學習 347
10.1.2 自動推理 350
10.1.3 專家系統 353
10.1.4 模式識別 356
10.1.5 人工神經網路 358
10.1.6 遺傳演算法 362
10.2 人工智慧在量化投資中的應用 366
10.2.1 模式識別短線擇時 366
10.2.2 rbf神經網路股價預測 370
10.2.3 基於遺傳演算法的新股預測 375
第 11章 數據挖掘 381
11.1 基本概念 382
11.1.1 主要模型 382
11.1.2 典型方法 384
11.2 主要內容 385
11.2.1 分類與預測 385
11.2.2 關聯規則 391
11.2.3 聚類分析 397
11.3 數據挖掘在量化投資中的應用 400
11.3.1 基於som 網路的股票聚類分析方法 400
11.3.2 基於關聯規則的板塊輪動 403
第 12章 小波分析 407
12.1 基本概念 408
12.2 小波變換主要內容 409
12.2.1 連續小波變換 409
12.2.2 連續小波變換的離散化 410
12.2.3 多分辨分析與mallat演算法 411
12.3小波分析在量化投資中的應用 414
12.3.1 k線小波去噪 414
12.3.2 金融時序數據預測 420
第 13章 支持向量機 429
13.1 基本概念 430
13.1.1 線性svm 430
13.1.2 非線性svm 433
13.1.3 svm分類器參數選擇 435
13.1.4 svm分類器從二類到多類的推廣 436
13.2 模糊支持向量機 437
13.2.1 增加模糊後處理的svm 437
13.2.2 引入模糊因子的svm訓練演算法 439
13.3 svm在量化投資中的應用 440
13.3.1 復雜金融時序數據預測 440
13.3.2 趨勢拐點預測 445
第 14章 分形理論 452
14.1 基本概念 453
14.1.1 分形定義 453
14.1.2 幾種典型的分形 454
14.1.3 分形理論的應用 456
14.2 主要內容 457
14.2.1 分形維數 457
14.2.2 l系統 458
14.2.3 ifs系統 460
14.3 分形理論在量化投資中的應用 461
14.3.1 大趨勢預測 461
14.3.2 匯率預測 466
第 15章 隨機過程 473
15.1 基本概念 473
15.2 主要內容 476
15.2.1 隨機過程的分布函數 476
15.2.2 隨機過程的數字特徵 476
15.2.3 幾種常見的隨機過程 477
15.2.4 平穩隨機過程 479
15.3 灰色馬爾可夫鏈股市預測 480
第 16章 it技術 486
16.1 數據倉庫技術 486
16.1.1 從資料庫到數據倉庫 487
16.1.2 數據倉庫中的數據組織 489
16.1.3 數據倉庫的關鍵技術 491
16.2 編程語言 493
16.2.1 GPU演算法交易 493
16.2.2 MATLAB 語言 497
16.2.3 c#語言 504
第 17章 主要數據與工具 509
17.1 名策多因子分析系統 509
17.2 MultiCharts:程序化交易平台 511
17.3 交易開拓者:期貨自動交易平台 514
17.4 大連交易所套利指令 518
17.5 mt5:外匯自動交易平台 522
第 18章 量化對沖交易系統:D-alpha 528
18.1 系統構架 528
18.2 策略分析流程 530
18.3 核心演算法 532
18.4 驗證結果 534
表目錄
表1 1 不同投資策略對比 7
表2 1 多因子選股模型候選因子 30
表2 2 多因子模型候選因子初步檢驗 31
表2 3 多因子模型中通過檢驗的有效因子 32
表2 4 多因子模型中剔除冗餘後的因子 33
表2 5 多因子模型組合分段收益率 33
表2 6 晨星市場風格判別法 36
表2 7 夏普收益率基礎投資風格鑒別 37
表2 8 中信標普風格指數 41
表2 9 風格動量策略組合月均收益率 43
表2 10 大小盤風格輪動策略月收益率均值 46
表2 11 中國貨幣周期分段(2000—2009年) 49
表2 12 滬深300行業指數統計 50
表2 13 不同貨幣階段不同行業的收益率 51
表2 14 招商資金流模型(cmsmf)計算方法 58
表2 15 招商資金流模型(cmsmf)選股指標定義 59
表2 16 資金流模型策略——滬深300 61
表2 17 資金流模型策略——全市場 62
表2 18 動量組合相對基準的平均年化超額收益(部分) 68
表2 19 反轉組合相對基準的平均年化超額收益(部分) 69
表2 20 動量策略風險收益分析 71
表2 21 反轉策略風險收益分析 73
表2 22 趨勢追蹤技術收益率 93
表2 23 籌碼選股模型中單個指標的收益率情況對比 99
表3 1 ma指標擇時測試最好的20 組參數及其表現 117
表3 2 4個趨勢型指標最優參數下的獨立擇時交易表現比較 120
表3 3 有交易成本情況下不同信號個數下的綜合擇時策略 120
表3 4 自適應均線擇時策略收益率分析 124
表3 5 市場情緒類別 126
表3 6 滬深300指數在不同情緒區域的當月收益率比較 128
表3 7 滬深300指數在不同情緒變化區域的當月收益率比較 129
表3 8 滬深300指數在不同情緒區域的次月收益率比較 130
表3 9 滬深300指數在不同情緒變化區域的次月收益率比較 130
表3 10 情緒指數擇時收益率統計 132
表3 11 svm擇時模型的指標 156
表3 12 svm對滬深300指數預測結果指標匯總 156
表3 13 svm擇時模型在整體市場的表現 156
表3 14 svm擇時模型在單邊上漲市的表現 157
表3 15 svm擇時模型在單邊下跌市的表現 158
表3 16 svm擇時模型在震盪市的表現 159
表3 17 雜訊交易在熊市擇時的收益率 170
表4 1 各種方法在不同股票數量下的跟蹤誤差(年化) 190
表4-2 股指期貨多頭跨期套利過程分析 199
表4 3 不同開倉比例下的不同保證金水平能夠覆蓋的市場波動及其概率 211
表4 4 不同倉單持有期下的保證金覆蓋比例 212
表6 1 融券標的股票中在樣本期內最相關的50 對組合(部分) 248
表6 2 殘差的平穩性、自相關等檢驗 249
表6 3 在不同的閾值下建倉、平倉所能獲得的平均收益 251
表6 4 採用不同的模型在樣本內獲取的收益率及最優閾值 252
表6 5 採用不同的模型、不同的外推方法在樣本外獲取的收益率(%) 253
表6 6 主成分配對交易在樣本內取得的收益率及最優閾值 255
表6 7 主成分配對交易在樣本外的效果 255
表6-8 各種模型下統計套利的結果 256
表6 9 延後開倉+提前平倉策略實證結果 260
表6 10 各行業的配對交易結果 261
表7 1 多頭股票-期權套利綜合分析表 283
表7 2 多頭股票—股票期權套利案例損益分析表 284
表7 3 多頭股票-指數期權套利案例損益分析表 285
表7 4 轉換套利分析過程 286
表7 5 買入跨式套利綜合分析表 289
表7 6 買入跨式套利交易細節 289
表7 7 賣出跨式套利綜合分析表 291
表7 8 賣出跨式套利交易細節 292
表7 9 買入寬跨式套利綜合分析表 293
表7 10 賣出寬跨式套利綜合分析表 294
表7 11 買入蝶式套利綜合分析表 296
表7 12 賣出蝶式套利綜合分析表 298
表7 13 買入飛鷹套利分析表 300
表7 14 賣出飛鷹式套利綜合分析表 301
表9 1 主要並購方式 324
表9 2 並購套利流程 325
表9 3 鵬華300 lof兩次正向套利的情況 339
表9 4 鵬華300 lof兩次反向套利的情況 340
表10 1 自動推理中連詞系統 352
表10 2 模式識別短線擇時樣本數據分類 369
表10 3 rbf神經網路股價預測結果 375
表10 4 遺傳演算法新股預測參數設置 379
表10 5 遺傳演算法新股預測結果 380
表11 1 決策樹數據表 389
表11 2 關聯規則案例數據表 392
表11 3 som股票聚類分析結果 403
表11 4 21種股票板塊指數布爾關系表數據片斷 404
表12 1 深發展a日收盤價小波分析方法預測值與實際值比較 427
表12 2 不同分解層數的誤差均方根值 428
表13 1 svm滬深300指數預測誤差情況 445
表13 2 svm指數預測和神經網路預測的比較 445
表13 3 技術反轉點定義與圖型 448
表13 4 svm趨勢拐點預測結果 450
表14 1 持續大漲前後分形各主要參數值 463
表14 2 持續大跌前後分形個主要參數值 465
表14 3 外匯r/ s 分析的各項指標 469
表14 4 v(r/s)曲線回歸檢驗 470
表15 1 灰色馬爾可夫鏈預測深證成指樣本內(2005/1—2006/8) 484
表15 2 灰色馬爾可夫鏈預測深證成指樣本外(2006/9—2006/12) 484
表16-1 vba的12種數據類型 499
表18-1 d-alpha系統在全球市場收益率分析 534
6. 實時聚類分析,怎麼操作
「十大股票軟體排行榜」里有個股診斷功能,裡面有效的分析了大盤及個股壓力位支撐位及消息面分析,一切都是免費的。
7. 聚類分析在股票板塊中的應用 急需此題論文!!
請先看看下面這教程,看能否找到你要的答案,不明再問我。。
www.fjmu.e.cn
8. Matlab如何計算股票的相關系數,平均路徑長度,聚類系數。關於股票穩定性分析的,求大蝦指教,不會做,求
好多亂碼。。,
樓主,你問問題都這么不認真的話,也不要指望大家會認真的幫你想辦法了。。。